skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatio‐Temporal Machine Learning for Regional to Continental Scale Terrestrial Hydrology
Abstract Integrated hydrologic models can simulate coupled surface and subsurface processes but are computationally expensive to run at high resolutions over large domains. Here we develop a novel deep learning model to emulate subsurface flows simulated by the integrated ParFlow‐CLM model across the contiguous US. We compare convolutional neural networks like ResNet and UNet run autoregressively against our novel architecture called the Forced SpatioTemporal RNN (FSTR). The FSTR model incorporates separate encoding of initial conditions, static parameters, and meteorological forcings, which are fused in a recurrent loop to produce spatiotemporal predictions of groundwater. We evaluate the model architectures on their ability to reproduce 4D pressure heads, water table depths, and surface soil moisture over the contiguous US at 1 km resolution and daily time steps over the course of a full water year. The FSTR model shows superior performance to the baseline models, producing stable simulations that capture both seasonal and event‐scale dynamics across a wide array of hydroclimatic regimes. The emulators provide over 1,000× speedup compared to the original physical model, which will enable new capabilities like uncertainty quantification and data assimilation for integrated hydrologic modeling that were not previously possible. Our results demonstrate the promise of using specialized deep learning architectures like FSTR for emulating complex process‐based models without sacrificing fidelity.  more » « less
Award ID(s):
2134892
PAR ID:
10514174
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
6
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Snow dominated mountainous karst watersheds are the primary source of water supply in many areas in the western U.S. and worldwide. These watersheds are typically characterized by complex terrain, spatiotemporally varying snow accumulation and melt processes, and duality of flow and storage dynamics because of the juxtaposition of matrix (micropores and small fissures) and karst conduits. As a result, predicting streamflow from meteorological inputs has been challenging due to the inability of physically based or conceptual hydrologic models to represent these unique characteristics. We present a hybrid modeling approach that integrates a physically based, spatially distributed, snow model with a deep learning karst model. More specifically, the high‐resolution snow model captures spatiotemporal variability in snowmelt, and the deep learning model simulates the corresponding response of streamflow as influenced by complex surface and subsurface properties. The deep learning model is based on the Convolutional Long Short‐Term Memory (ConvLSTM) architecture capable of handling spatiotemporal recharge patterns and watershed storage dynamics. The hybrid modeling approach is tested on a watershed in northern Utah with seasonal snow cover and variably karstified carbonate bedrock. The hybrid models were able to simulate streamflow at the watershed outlet with high accuracy. The spatial and temporal recharge and discharge patterns learned by the ConvLSTM model were then examined and compared with known hydrogeologic information. Results suggest that ConvLSTM simulates streamflow with higher accuracy than reference models for the study area and provides insight into spatially influenced hydrologic responses that are unavailable within lumped modeling approaches. 
    more » « less
  2. Abstract Unprecedented climate change and anthropogenic activities have induced increasing ecohydrological problems, motivating the development of large‐scale hydrologic modeling for solutions. Water age/quality is as important as water quantity for understanding the terrestrial water cycle. However, scientific progress in tracking water parcels at large‐scale with high spatiotemporal resolutions is far behind that in simulating water balance/quantity owing to the lack of powerful modeling tools. EcoSLIM is a particle tracking model working with ParFlow‐CLM that couples integrated surface‐subsurface hydrology with land surface processes. Here, we demonstrate a parallel framework on distributed, multi‐Graphics Processing Unit platforms with Compute Unified Device Architecture‐Aware Message Passing Interface for accelerating EcoSLIM to continental‐scale. In tests from catchment‐, to regional‐, and then to continental‐scale using 25‐million to 1.6‐billion particles, EcoSLIM shows significant speedup and excellent parallel performance. The parallel framework is portable to atmospheric and oceanic particle tracking models, where the parallelization is inadequate, and a standard parallel framework is also absent. The parallelized EcoSLIM is a promising tool to accelerate our understanding of the terrestrial water cycle and the upscaling of subsurface hydrology to Earth System Models. 
    more » « less
  3. Abstract Integrated hydrological modeling is an effective method for understanding interactions between parts of the hydrologic cycle, quantifying water resources, and furthering knowledge of hydrologic processes. However, these models are dependent on robust and accurate datasets that physically represent spatial characteristics as model inputs. This study evaluates multiple data‐driven approaches for estimating hydraulic conductivity and subsurface properties at the continental‐scale, constructed from existing subsurface dataset components. Each subsurface configuration represents upper (unconfined) hydrogeology, lower (confined) hydrogeology, and the presence of a vertical flow barrier. Configurations are tested in two large‐scale U.S. watersheds using an integrated model. Model results are compared to observed streamflow and steady state water table depth (WTD). We provide model results for a range of configurations and show that both WTD and surface water partitioning are important indicators of performance. We also show that geology data source, total subsurface depth, anisotropy, and inclusion of a vertical flow barrier are the most important considerations for subsurface configurations. While a range of configurations proved viable, we provide a recommended Selected National Configuration 1 km resolution subsurface dataset for use in distributed large‐and continental‐scale hydrologic modeling. 
    more » « less
  4. Abstract Hydrologic modeling has been a useful approach for analyzing water partitioning in catchment systems. It will play an essential role in studying the responses of watersheds under projected climate changes. Numerous studies have shown it is critical to include subsurface heterogeneity in the hydrologic modeling to correctly simulate various water fluxes and processes in the hydrologic system. In this study, we test the idea of incorporating geophysics‐obtained subsurface critical zone (CZ) structures in the hydrologic modeling of a mountainous headwater catchment. The CZ structure is extracted from a three‐dimensional seismic velocity model developed from a series of two‐dimensional velocity sections inverted from seismic travel time measurements. Comparing different subsurface models shows that geophysics‐informed hydrologic modeling better fits the field observations, including streamflow discharge and soil moisture measurements. The results also show that this new hydrologic modeling approach could quantify many key hydrologic fluxes in the catchment, including streamflow, deep infiltration, and subsurface water storage. Estimations of these fluxes from numerical simulations generally have low uncertainties and are consistent with estimations from other methods. In particular, it is straightforward to calculate many hydraulic fluxes or states that may not be measured directly in the field or separated from field observations. Examples include quickflow/subsurface lateral flow, soil/rock moisture, and deep infiltration. Thus, this study provides a useful approach for studying the hydraulic fluxes and processes in the deep subsurface (e.g., weathered bedrock), which needs to be better represented in many earth system models. 
    more » « less
  5. Abstract Despite a multitude of small catchment studies, we lack a deep understanding of how variations in critical zone architecture lead to variations in hydrologic states and fluxes. This study characterizes hydrologic dynamics of 15 catchments of the U.S. Critical Zone Observatory (CZO) network where we hypothesized that our understanding of subsurface structure would illuminate patterns of hydrologic partitioning. The CZOs collect data sets that characterize the physical, chemical, and biological architecture of the subsurface, while also monitoring hydrologic fluxes such as streamflow, precipitation, and evapotranspiration. For the first time, we collate time series of hydrologic variables across the CZO network and begin the process of examining hydrologic signatures across sites. We find that catchments with low baseflow indices and high runoff sensitivity to storage receive most of their precipitation as rain and contain clay‐rich regolith profiles, prominent argillic horizons, and/or anthropogenic modifications. In contrast, sites with high baseflow indices and low runoff sensitivity to storage receive the majority of precipitation as snow and have more permeable regolith profiles. The seasonal variability of water balance components is a key control on the dynamic range of hydraulically connected water in the critical zone. These findings lead us to posit that water balance partitioning and streamflow hydraulics are linked through the coevolution of critical zone architecture but that much work remains to parse these controls out quantitatively. 
    more » « less