skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact of Alkyl Core Substitution Kinetics in Diaryl Dihydrophenazine Photoredox Catalysts on Properties and Performance in O-ATRP
Organocatalyzed atom transfer radical polymerization (O-ATRP) is a controlled radical polymerization method mediated by organic photoredox catalysts (PCs) for producing polymers with well-defined structures. While N,N-diaryl dihydrophenazine PCs have successfully produced polymers with low dispersity (Đ < 1.3) in O-ATRP, low initiator efficiencies (I* ∼ 60–80%) indicate an inability to achieve targeted molecular weights and have been attributed to the addition of radicals to the PC core. In this work, we measure the rates of alkyl core substitution (AkCS) to gain insight into why PCs differing in N-aryl group connectivity exhibit differences in polymerization control. Additionally, we evaluate how PC properties evolve during O-ATRP when a non-core-substituted PC is used. PC 1 with 1-naphthyl groups in the N-aryl position resulted in faster AkCS (k1 = 1.21 ± 0.16 × 10–3 s–1, k2 = 2.04 ± 0.11 × 10–3 s–1) and better polymerization control at early reaction times as indicated by plots of molecular weight (number average molecular weight = Mn) vs conversion compared to PC 2 with 2-naphthyl groups (k1 = 6.28 ± 0.38 × 10–4 s–1, k2 = 1.15 ± 0.07 × 10–3 s–1). The differences in rates indicate that N-aryl connectivity can influence polymerization control by changing the rate of AkCS PC formation. The rate of AkCS increased from the initial to the second substitution, suggesting that PC properties are modified by AkCS. Increased PC radical cation (PC•+) oxidation potentials (E1/2 = 0.26–0.27 V vs SCE) or longer triplet excited-state lifetimes (τT1 = 1.4–33 μs) for AkCS PCs 1b and 2b compared to parent PCs 1 and 2 (E1/2 = 0.21–0.22 V vs SCE, τT1 = 0.61–3.3 μs) were observed and may explain changes to PC performance with AkCS. Insight from evaluation of the formation, properties, and performance of AkCS PCs will facilitate their use in O-ATRP and in other PC-driven organic transformations.  more » « less
Award ID(s):
2055742
PAR ID:
10514249
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Catalysis
Volume:
13
Issue:
21
ISSN:
2155-5435
Page Range / eLocation ID:
14042 to 14051
Subject(s) / Keyword(s):
catalysts photocatalysts polymerization polymers radical polymerization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phenoxazines are a successful class of organic photoredox catalysts (PCs) with tunable redox and photophysical properties. Originally, we aimed to realize more reducing phenoxazine PCs through heteroatom core substituted (HetCS) derivatives, while maintaining an efficiently oxidizing PC·+. However, core modification with thioether or ether functionality to a PC that exhibits photoinduced intramolecular charge transfer (CT) negligibly alters the singlet excited state reduction potential (ES1°*), while yielding a less oxidizing PC·+(E1/2) (E1/2 = 0.50–0.64 V vs. SCE) compared to the noncore modified PC1(0.68 V vs. SCE). Photophysical characterization of HetCS PCs revealed that increasing electron density on the core of a CT exhibiting PC stabilizes the emissive state and PC·+, resulting in a relatively unchangedES1°* compared to PC1. In contrast, modifying the core of a PC that does not exhibit CT yields a highly reducingES1°* (PC3= −2.48 V vs. SCE) compared to its CT equivalent (PC1d= −1.68 V vs. SCE). The impact of PC property on photocatalytic ability was evaluated through organocatalyzed atom transfer radical polymerization (O‐ATRP). HetCS PCs were able to yield poly(methyl methacrylate) with low dispersity and moderate targeted molecular weight as evaluated by initiator efficiency (I*) in DMAc (Ð= 1.20–1.26;I*= 47–57%). Ultimately, this work provides insight into how phenoxazine PC properties are altered through structural modification, which can inform future PC design. 
    more » « less
  2. Photoinduced organocatalyzed atom-transfer radical polymerization (O-ATRP) is a controlled radical polymerization technique that can be driven using low-energy, visible light and makes use of organic photocatalysts. Limitations of O-ATRP have traditionally included the need for high catalyst loadings (1000 ppm) and the narrow scope of monomers that can be controllably polymerized. Recent advances have shown that N , N -diaryl dihydrophenazine (DHP) organic photoredox catalysts (PCs) are capable of controlling O-ATRP at PC loadings as low as 10 ppm, a significant advancement in the field. In this work we synthesized five new DHP PCs and examined their efficacy in controlling O-ATRP at low ppm catalyst loadings. We found that we were able to polymerize methyl methacrylate at PC loadings as low as 10 ppm (relative to monomer) while producing polymers with dispersities as low as Đ = 1.33 and achieving initiator efficiencies ( I* ) near unity (102%). In addition to applying these PCs in O-ATRP, we carried out a thorough investigation into the structure–property relationships of the new DHP PCs reported herein and report new photophysical characterization data for previously reported DHPs. The insight into the DHP structure–property relationships that we discuss herein will aid in the elucidation of their ability to catalyze O-ATRP at low catalyst loadings. Additionally, this work sheds light on how structural modifications affect certain PC properties with the goal of bolstering our understanding of how to tune PC structures to overcome current limitations in O-ATRP such as the controlled polymerization of challenging monomers. 
    more » « less
  3. Abstract The first well‐controlled aqueous atom‐transfer radical polymerization (ATRP) conducted in the open air is reported. This air‐tolerant ATRP was enabled by the continuous conversion of oxygen to carbon dioxide catalyzed by glucose oxidase (GOx), in the presence of glucose and sodium pyruvate as sequential sacrificial substrates. Controlled polymerization using initiators for continuous activator regeneration (ICAR) ATRP of oligo(ethylene oxide) methyl ether methacrylate (OEOMA,Mn=500) yielded polymers with low dispersity (1.09≤Đ≤1.29) and molecular weights (MWs) close to theoretical values in the presence of pyruvate. Without added pyruvates, lower MWs were observed due to generation of new chains by H2O2formed by reaction of O2with GOx. Successful chain extension of POEOMA500macroinitiator with OEOMA300(Đ≤1.3) and Bovine Serum Albumin bioconjugates (Đ≤1.22) confirmed a well‐controlled polymerization. The reactions in the open air in larger scale (25 mL) were also successful. 
    more » « less
  4. Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X–Cu II /L). The role of PC was to trigger and drive the polymerization, while X–Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X–Cu II /L, generating Cu I /L activator and PC˙ + . The ATRP ligand (L) used in excess then reduced the PC˙ + , closing the photocatalytic cycle. The continuous reduction of X–Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X–Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions. 
    more » « less
  5. null (Ed.)
    ATRP (atom transfer radical polymerization) is one of the most robust reversible deactivation radical polymerization (RDRP) systems. However, the limited oxygen tolerance of conventional ATRP impedes its practical use in an ambient atmosphere. In this work, we developed a fully oxygen-tolerant PICAR (photoinduced initiators for continuous activator regeneration) ATRP process occurring in both water and organic solvents in an open reaction vessel. Continuous regeneration of the oxidized form of the copper catalyst with sodium pyruvate through UV excitation allowed the chemical removal of oxygen from the reaction mixture while maintaining a well-controlled polymerization of N -isopropylacrylamide (NIPAM) or methyl acrylate (MA) monomers. The polymerizations of NIPAM were conducted with 250 ppm (with respect to the monomer) or lower concentrations of CuBr 2 and a tris[2-(dimethylamino)ethyl]amine ligand. The polymers were synthesized to nearly quantitative monomer conversions (>99%), high molecular weights ( M n > 270 000), and low dispersities (1.16 < Đ < 1.44) in less than 30 min under biologically relevant conditions. The reported method provided a well-controlled ATRP ( Đ = 1.16) of MA in dimethyl sulfoxide despite oxygen diffusion from the atmosphere into the reaction system. 
    more » « less