Abstract SARS-CoV-2 is an RNA enveloped virus responsible for the COVID-19 pandemic that conducted in 6 million deaths worldwide so far. SARS-CoV-2 particles are mainly composed of the 4 main structural proteins M, N, E and S to form 100 nm diameter viral particles. Based on productive assays, we propose an optimal transfected plasmid ratio mimicking the viral RNA ratio in infected cells. This allows SARS-CoV-2 Virus-Like Particle (VLPs) formation composed of the viral structural proteins M, N, E and mature S. Furthermore, fluorescent or photoconvertible VLPs were generated by adding a fluorescent protein tag on N or M mixing with unlabeled viral proteins and characterized by western blots, atomic force microscopy coupled to fluorescence and immuno-spotting. Thanks to live fluorescence and super-resolution microscopies, we quantified VLPs size and concentration. SARS-CoV-2 VLPs present a diameter of 110 and 140 nm respectively for MNE-VLPs and MNES-VLPs with a concentration of 10e12 VLP/ml. In this condition, we were able to establish the incorporation of the Spike in the fluorescent VLPs. Finally, the Spike functionality was assessed by monitoring fluorescent MNES-VLPs docking and internalization in human pulmonary cells expressing or not the receptor hACE2. Results show a preferential maturation of S on N(GFP) labeled VLPs and an hACE2-dependent VLP internalization and a potential fusion in host cells. This work provides new insights on the use of non-fluorescent and fluorescent VLPs to study and visualize the SARS-CoV-2 viral life cycle in a safe environment (BSL-2 instead of BSL-3). Moreover, optimized SARS-CoV-2 VLP production can be further adapted to vaccine design strategies.
more »
« less
A simple swell-and-click method for the covalent attachment of virus-like particles to polymer hydrogels
Plant virus-like particles (VLPs) are biocompatible, non-infectious nanomaterials with promising applications as immunotherapeutics and vaccines. However, slow-release VLP formulations are needed to achieve long-term efficacy without repeated administration. VLP hydrogels allow the encapsulation and sustained delivery of VLPs, but the particles must covalently bind the hydrogel polymers to avoid premature loss. This has been achieved so far by in situ VLP polymerization, which requires high viral concentrations (5–10 mg/mL, 0.5–1 wt%) to form stable hybrid VLP–hydrogel networks and this complicates scalability and clinical translation. Here, we developed a novel swell-and-click method that led to successful VLP scaffold formation regardless of the viral load used. As a result, VLP-functionalized hydrogels were fabricated with viral concentrations as low as 0.1–1 mg/mL (0.01–0.1 % wt%) without compromising the scaffold stability on the process. The hydrogels incorporate VLPs during swelling, followed by copper-free click chemistry reactions that bind the particles covalently to the polymer. The swell-and-click method also resulted in more than a two-fold enhancement in VLP uptake into the hydrogels and it provides a means of combined burst release and prolonged sustained release, desired traits for cancer immunotherapy treatment. The present work introduces a novel methodology for the design of VLP-based hydrogels, which could facilitate the scalability of the fabrication process and move a significant step forward towards clinical translation of long-term VLP vaccination in cancer disease.
more »
« less
- PAR ID:
- 10514301
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Materials Today Chemistry
- Volume:
- 38
- Issue:
- C
- ISSN:
- 2468-5194
- Page Range / eLocation ID:
- 102100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Virus-like particles (VLPs) have been proposed as an attractive tool in SARS-CoV-2 vaccine development, both as (1) a vaccine candidate with high immunogenicity and low reactogenicity and (2) a substitute for live virus in functional and neutralization assays. Though multiple SARS-CoV-2 VLP designs have already been explored in Sf9 insect cells, a key parameter ensuring VLPs are a viable platform is the VLP spike yield (i.e., spike protein content in VLP), which has largely been unreported. In this study, we show that the common strategy of producing SARS-CoV-2 VLPs by expressing spike protein in combination with the native coronavirus membrane and/or envelope protein forms VLPs, but at a critically low spike yield (~0.04–0.08 mg/L). In contrast, fusing the spike ectodomain to the influenza HA transmembrane domain and cytoplasmic tail and co-expressing M1 increased VLP spike yield to ~0.4 mg/L. More importantly, this increased yield translated to a greater VLP spike antigen density (~96 spike monomers/VLP) that more closely resembles that of native SARS-CoV-2 virus (~72–144 Spike monomers/virion). Pseudotyping further allowed for production of functional alpha (B.1.1.7), beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) SARS-CoV-2 VLPs that bound to the target ACE2 receptor. Finally, we demonstrated the utility of pseudotyped VLPs to test neutralizing antibody activity using a simple, acellular ELISA-based assay performed at biosafety level 1 (BSL-1). Taken together, this study highlights the advantage of pseudotyping over native SARS-CoV-2 VLP designs in achieving higher VLP spike yield and demonstrates the usefulness of pseudotyped VLPs as a surrogate for live virus in vaccine and therapeutic development against SARS-CoV-2 variants.more » « less
-
Abstract A hydrogel is often fabricated from preexisting polymer chains by covalently crosslinking them into a polymer network. The crosslinks make the hydrogel swell‐resistant but brittle. This conflict is resolved here by making a hydrogel from a dough. The dough is formed by mixing long polymer chains with a small amount of water and photoinitiator. The dough is then homogenized by kneading and annealing at elevated temperatures, during which the crowded polymer chains densely entangle. The polymer chains are then sparsely crosslinked into a polymer network under an ultraviolet lamp, and submerged in water to swell to equilibrium. The resulting hydrogel is both swell‐resistant and tough. The hydrogel also has near‐perfect elasticity, high strength, high fatigue resistance, and low friction. The method is demonstrated with two widely used polymers, poly(ethylene glycol) and cellulose. These hydrogels have never been made swell‐resistant, elastic, and tough before. The method is generally applicable to synthetic and natural polymers, and is compatible with industrial processing technologies, opening doors to the development of sustainable, high‐performance hydrogels.more » « less
-
Tessier, Peter Kane (Ed.)Virus-like particles (VLPs) are self-assembling protein nanoparticles that have great promise as vectors for drug delivery. VLPs are derived from viruses but retain none of their infection or replication capabilities. These protein particles have defined surface chemistries, uniform sizes, and stability properties that make them attractive starting points for drug-delivery scaffolds. Here, we review recent advances in tailoring VLPs for drug-delivery applications, including VLP platform engineering approaches as well as methods for cargo loading, activation, and release. Finally, we highlight several successes using VLPs for drug delivery in model systems.more » « less
-
Abstract At Stromboli Volcano, Italy, very long period (VLP) seismic signals and Strombolian eruptions have been attributed to the unsteady flow of gas slugs through the shallow plumbing system followed by explosive slug bursting at a free surface. In data from a 2018 seismo‐acoustic deployment, ∼92% of events in two main VLP multiplets do not coincide in time with impulsive infrasonic signals (the expected signal of explosive slug bursting); we term these “silent VLPs.” The lack of infrasonically detected explosions relative to repeating VLPs does not support the commonly invoked “gas slug” model. We propose that VLPs may be generated when gas bubbles move into a weak semi‐solid plug in the uppermost portion of the conduit. The plug then acts as a mechanical filter in which pathways vary and guide or trap ascending gas slugs, allowing for passive (silent) gas release and explosive escape mechanisms decoupled in time from VLPs.more » « less