Photothermal reagents sensitive to near‐infrared (NIR) light are promising imaging agents and therapeutics for anticancer applications because of the deep tissue penetration of NIR light, allowing for spatiotemporal control over the therapeutic activity, with minimal damage to normal tissues. Herein, a new class of NIR‐sensitive biopolymer‐based nanoparticles is presented by covalently conjugating indocyanine green (ICG) onto the surface of naturally occurring glycogen nanoparticles. The resulting ICG‐glycogen conjugates exhibit a markedly enhanced aqueous stability in comparison to free ICG molecules. Furthermore, an efficient light‐to‐heat conversion is enabled by ICG‐glycogen conjugates, as evidenced by the elevated temperatures of their aqueous solutions upon exposure to NIR light. Critically, ICG‐glycogen conjugates are capable of cell internalization, and under NIR irradiation the effective eradication of breast cancer cells, demonstrating their potential in photothermal therapy for cancer.
In the efforts to generate a less toxic X‐Ray bioimaging contrast agent, a fully organic, radioluminescent nanoparticle system that emits in the near‐infrared (NIR) region when excited with an X‐Ray source is synthesized using a two‐step process. First, red‐emitting nanoparticles are fabricated by the emulsion copolymerization of styrene and propargyl acrylate with anthracene, naphthalimide, and rhodamine B methyl methacrylate derivatives. Subsequently, the nanoparticles are modified with silicon phthalocyanine and indocyanine green derivatives via a copper(I)‐catalyzed azide/alkyne cycloaddition “click” reaction. By coupling an organic scintillator with four Förster resonance energy transfer‐pairing dyes, X‐Ray‐induced, multiple, sequential energy transfer is exploited to convert ionizing radiation from an X‐Ray source into NIR light, which is optimal for biomedical imaging. Proof‐of‐concept imaging studies show that the X‐Ray‐induced indocyanine green fluorescence from the particulate system can be visualized through porcine tissue. Additionally, toxicity studies in human embryonic kidney cells indicate that the particles are nontoxic and applicable
- NSF-PAR ID:
- 10514545
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Photonics Research
- Volume:
- 5
- Issue:
- 6
- ISSN:
- 2699-9293
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Core/shell nanoparticles composed of a silica core over which a propargyl methacrylate (PMA) shell was polymerized around were synthesized. To employ the shell coating, the surface of the silica nanoparticles (SiNPs) was modified with an alkene-terminated organometallic silane linker that allowed for the covalent attachment of a poly(propargyl methacrylate) (pPMA) shell. The alkyne groups resulting from the pPMA shell were utilized in copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reactions to attach azide-modified Förster resonance energy transfer (FRET) pairs of naphthalimide (azNap), rhodamine B (azRhod), and silicon phthalocyanine (azSiPc) derivatives to the shell surface. The luminescence of the system was manipulated by the covalent attachment of one, two, or three of the fluorophores resulting in no energy transfer, one energy transfer, or two energy transfers, respectively. When all three fluorophores were attached to the core/shell particles, an excitation of azNap with a wavelength of 400 nm resulted in the sequential energy transfer between two FRET pairs and the sole emission of azSiPc at 670 nm. These particles may have applications as bioimaging probes as their luminescence is easily detected using fluorescence microscopy.
-
Abstract The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50–75%. Advanced real‐time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near‐infrared (NIR‐II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR‐II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR‐II fluorophore, XW‐03‐66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW‐03‐66 self‐assembles into nanoparticles (≈80 nm) and has a systemic circulation half‐life ( t 1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV‐ OSCC, XW‐03‐66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR‐II image‐guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications.more » « less
-
Abstract The development of fluorophores with photoemission beyond 1000 nm provides the opportunity to develop novel fluorescence microscopes sensitive to those wavelengths. Imaging at wavelengths beyond the visible spectrum enables imaging depths of hundreds of microns in intact tissue, making this attractive for volumetric imaging applications. Here, a novel shortwave‐infrared line‐scan confocal microscope is presented that is capable of deep imaging of biological specimens, as demonstrated by visualization of labeled glomeruli in a fixed uncleared kidney at depths beyond 400 µm. Imaging of brain vasculature labeled with the near‐infrared organic dye indocyanine green, the shortwave‐infrared organic dye Chrom7, and rare earth‐doped nanoparticles is also shown, thus encompassing the entire spectrum detectable by a typical shortwave‐infrared sensitive InGaAs detector.
-
Abstract X‐ray radiation exhibits diminished scattering and a greater penetration depth in tissue relative to the visible spectrum and has spawned new medical imaging techniques that exploit X‐ray luminescence of nanoparticles. The majority of the nanoparticles finding applications in this field incorporate metals with high atomic numbers and pose potential toxicity effects. Here, a general strategy for the preparation of a fully organic X‐ray radioluminescent colloidal platform that can be tailored to emit anywhere in the visible spectrum through a judicious choice in donor/acceptor pairing and multiple sequential Förster resonance energy transfers (FRETs) is presented. This is demonstrated with three different types of ≈100 nm particles that are doped with anthracene as the scintillating molecule to “pump” subsequent FRET dye pairs that result in emissions from ≈400 nm out past 700 nm. The particles can be self‐assembled in crystalline colloidal arrays, and the radioluminescence of the particles can be dynamically tuned by coupling the observed rejection wavelength with the dyes' emission.