skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A direct detection view of the neutrino NSI landscape
A<sc>bstract</sc> In this article, we study the potential of direct detection experiments to explore the parameter space of general non-standard neutrino interactions (NSI) via solar neutrino scattering. Due to their sensitivity to neutrino-electron and neutrino-nucleus scattering, direct detection provides a complementary view of the NSI landscape to that of spallation sources and neutrino oscillation experiments. In particular, the large admixture of tau neutrinos in the solar flux makes direct detection experiments well-suited to probe the full flavour space of NSI. To study this, we develop a re-parametrisation of the NSI framework that explicitly includes a variable electron contribution and allows for a clear visualisation of the complementarity of the different experimental sources. Using this new parametrisation, we explore how previous bounds from spallation source and neutrino oscillation experiments are impacted. For the first time, we compute limits on NSI from the first results of the XENONnT and LUX-ZEPLIN experiments, and we obtain projections for future xenon-based experiments. These computations have been performed with our newly developed software package, SNuDD. Our results demonstrate the importance of using a more general NSI parametrisation and indicate that next generation direct detection experiments will become powerful probes of neutrino NSI.  more » « less
Award ID(s):
2209444
PAR ID:
10514622
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
7
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Next generation direct dark matter (DM) detection experiments will have unprecedented capabilities to explore coherent neutrino-nucleus scattering (CEνNS) complementary to dedicated neutrino experiments. We demonstrate that future DM experiments can effectively probe nonstandard neutrino interactions (NSI) mediated by scalar fields in the scattering of solar and atmospheric neutrinos. We set first limits onS1leptoquark models that result in sizableμ-dandτ-dsector neutrino NSI CEνNS contributions using LUX-ZEPLIN (LZ) data. As we show, near future DM experiments reaching ∼𝒪(100) ton-year exposure, such as argon-based ARGO and xenon-based DARWIN, can probe parameter space of leptoquarks beyond the reach of current and planned collider facilities. We also analyze for the first time prospects for testing NSI in lead-based detectors. We discuss the ability of leptoquarks in the parameter space of interest to also explain the neutrino masses and (g-2)μobservations. 
    more » « less
  2. A bstract Neutrino non-standard interactions (NSI) with the first generation of standard model fermions can span a parameter space of large dimension and exhibit degeneracies that cannot be broken by a single class of experiment. Oscillation experiments, together with neutrino scattering experiments, can merge their observations into a highly informational dataset to combat this problem. We consider combining neutrino-electron and neutrino-nucleus scattering data from the Borexino and COHERENT experiments, including a projection for the upcoming coherent neutrino scattering measurement at the CENNS-10 liquid argon detector. We extend the reach of these data sets over the NSI parameter space with projections for neutrino scattering at a future multi-ton scale dark matter detector and future oscillation measurements from atmospheric neutrinos at the Deep Underground Neutrino Experiment (DUNE). In order to perform this global anal- ysis, we adopt a novel approach using the copula method, utilized to combine posterior information from different experiments with a large, generalized set of NSI parameters. We find that the contributions from DUNE and a dark matter detector to the Borexino and COHERENT fits can improve constraints on the electron and quark NSI parameters by up to a factor of 2 to 3, even when relatively many NSI parameters are left free to vary in the analysis. 
    more » « less
  3. A<sc>bstract</sc> We explore the complementarity of direct detection (DD) and spallation source (SS) experiments for the study of sterile neutrino physics. We focus on the sterile baryonic neutrino model: an extension of the Standard Model that introduces a massive sterile neutrino with couplings to the quark sector via a new gauge boson. In this scenario, the inelastic scattering of an active neutrino with the target material in both DD and SS experiments gives rise to a characteristic nuclear recoil energy spectrum that can allow for the reconstruction of the neutrino mass in the event of a positive detection. We first derive new bounds on this model based on the data from the COHERENT collaboration on CsI and LAr targets, which we find do not yet probe new areas of the parameter space. We then assess how well future SS experiments will be able to measure the sterile neutrino mass and mixings, showing that masses in the range ~15 − 50 MeV can be reconstructed. We show that there is a degeneracy in the measurement of the sterile neutrino mixing that substantially affects the reconstruction of parameters for masses of the order of 40 MeV. Thanks to their lower energy threshold and sensitivity to the solar tau neutrino flux, DD experiments allow us to partially lift the degeneracy in the sterile neutrino mixings and considerably improve its mass reconstruction down to 9 MeV. Our results demonstrate the excellent complementarity between DD and SS experiments in measuring the sterile neutrino mass and highlight the power of DD experiments in searching for new physics in the neutrino sector. 
    more » « less
  4. A<sc>bstract</sc> We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CEνNS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments. 
    more » « less
  5. A bstract Coherent elastic neutrino-nucleus scattering was first experimentally established five years ago by the COHERENT experiment using neutrinos from the spallation neutron source at Oak Ridge National Laboratory. The first evidence of observation of coherent elastic neutrino-nucleus scattering with reactor antineutrinos has now been reported by the Dresden-II reactor experiment, using a germanium detector. In this paper, we present constraints on a variety of beyond the Standard Model scenarios using the new Dresden-II data. In particular, we explore the constraints imposed on neutrino non-standard interactions, neutrino magnetic moments, and several models with light scalar or light vector mediators. We also quantify the impact of their combination with COHERENT (CsI and Ar) data. In doing so, we highlight the synergies between spallation neutron source and nuclear reactor experiments regarding beyond the Standard Model searches, as well as the advantages of combining data obtained with different nuclear targets. We also study the possible signal from beyond the Standard Model scenarios due to elastic scattering off electrons (which would pass selection cuts of the COHERENT CsI and the Dresden-II experiments) and find more stringent constraints in certain parts of the parameter space than those obtained considering coherent elastic neutrino-nucleus scattering. 
    more » « less