skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ConceptX: A Framework for Latent Concept Analysis
The opacity of deep neural networks remains a challenge in deploying solutions where explanation is as important as precision. We present ConceptX, a human-in-the-loop framework for interpreting and annotating latent representational space in pre-trained Language Models (pLMs). We use an unsupervised method to discover concepts learned in these models and enable a graphical interface for humans to generate explanations for the concepts. To facilitate the process, we provide auto-annotations of the concepts (based on traditional linguistic ontologies). Such annotations enable development of a linguistic resource that directly represents latent concepts learned within deep NLP models. These include not just traditional linguistic concepts, but also task-specific or sensitive concepts (words grouped based on gender or religious connotation) that helps the annotators to mark bias in the model. The framework consists of two parts (i) concept discovery and (ii) annotation platform.  more » « less
Award ID(s):
2113906
PAR ID:
10514665
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The AAAI Conference on Artificial Intelligence
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
13
ISSN:
2159-5399
Page Range / eLocation ID:
16395 to 16397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a novel framework for learning robust bipedal walking by combining a data-driven state representation with a Reinforcement Learning (RL) based locomotion policy. The framework utilizes an autoencoder to learn a low-dimensional latent space that captures the complex dynamics of bipedal locomotion from existing locomotion data. This reduced dimensional state representation is then used as states for training a robust RL-based gait policy, eliminating the need for heuristic state selections or the use of template models for gait planning. The results demonstrate that the learned latent variables are disentangled and directly correspond to different gaits or speeds, such as moving forward, backward, or walking in place. Compared to traditional template model-based approaches, our framework exhibits superior performance and robustness in simulation. The trained policy effectively tracks a wide range of walking speeds and demonstrates good generalization capabilities to unseen scenarios. 
    more » « less
  2. This paper presents a novel framework for learning robust bipedal walking by combining a data-driven state representation with a Reinforcement Learning (RL) based locomotion policy. The framework utilizes an autoencoder to learn a low-dimensional latent space that captures the complex dynamics of bipedal locomotion from existing locomotion data. This reduced dimensional state representation is then used as states for training a robust RL-based gait policy, eliminating the need for heuristic state selections or the use of template models for gait planning. The results demonstrate that the learned latent variables are disentangled and directly correspond to different gaits or speeds, such as moving forward, backward, or walking in place. Compared to traditional template model-based approaches, our framework exhibits superior performance and robustness in simulation. The trained policy effectively tracks a wide range of walking speeds and demonstrates good generalization capabilities to unseen scenarios. 
    more » « less
  3. Understanding the neural basis of the remarkable human cognitive capacity to learn novel concepts from just one or a few sensory experiences constitutes a fundamental problem. We propose a simple, biologically plausible, mathematically tractable, and computationally powerful neural mechanism for few-shot learning of naturalistic concepts. We posit that the concepts that can be learned from few examples are defined by tightly circumscribed manifolds in the neural firing-rate space of higher-order sensory areas. We further posit that a single plastic downstream readout neuron learns to discriminate new concepts based on few examples using a simple plasticity rule. We demonstrate the computational power of our proposal by showing that it can achieve high few-shot learning accuracy on natural visual concepts using both macaque inferotemporal cortex representations and deep neural network (DNN) models of these representations and can even learn novel visual concepts specified only through linguistic descriptors. Moreover, we develop a mathematical theory of few-shot learning that links neurophysiology to predictions about behavioral outcomes by delineating several fundamental and measurable geometric properties of neural representations that can accurately predict the few-shot learning performance of naturalistic concepts across all our numerical simulations. This theory reveals, for instance, that high-dimensional manifolds enhance the ability to learn new concepts from few examples. Intriguingly, we observe striking mismatches between the geometry of manifolds in the primate visual pathway and in trained DNNs. We discuss testable predictions of our theory for psychophysics and neurophysiological experiments. 
    more » « less
  4. Abstract Negation is a complex linguistic phenomenon present in all human languages. It can be seen as an operator that transforms an expression into another expression whose meaning is in some way opposed to the original expression. In this article, we survey previous work on negation with an emphasis on computational approaches. We start defining negation and two important concepts: scope and focus of negation. Then, we survey work in natural language processing that considers negation primarily as a means to improve the results in some task. We also provide information about corpora containing negation annotations in English and other languages, which usually include a combination of annotations of negation cues, scopes, foci, and negated events. We continue the survey with a description of automated approaches to process negation, ranging from early rule-based systems to systems built with traditional machine learning and neural networks. Finally, we conclude with some reflections on current progress and future directions. 
    more » « less
  5. Deep neural networks have achieved great successes on the image captioning task. However, most of the existing models depend heavily on paired image-sentence datasets, which are very expensive to acquire. In this paper, we make the first attempt to train an image captioning model in an unsupervised manner. Instead of relying on manually labeled image-sentence pairs, our proposed model merely requires an image set, a sentence corpus, and an existing visual concept detector. The sentence corpus is used to teach the captioning model how to generate plausible sentences. Meanwhile, the knowledge in the visual concept detector is distilled into the captioning model to guide the model to recognize the visual concepts in an image. In order to further encourage the generated captions to be semantically consistent with the image, the image and caption are projected into a common latent space so that they can reconstruct each other. Given that the existing sentence corpora are mainly designed for linguistic research and are thus with little reference to image contents, we crawl a large-scale image description corpus of two million natural sentences to facilitate the unsupervised image captioning scenario. Experimental results show that our proposed model is able to produce quite promising results without any caption annotations. 
    more » « less