skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Genome Sequences of Gordonia rubripertincta Phages LilyPad and PokyPuppy
Two lytic phages infectingGordonia rubripertinctawere isolated from irrigated desert soil. Phage LilyPad and PokyPuppy have 64,158-bp and 77,065-bp genomes, respectively. Based on gene content similarity to phages in the Actinobacteriophage database, LilyPad is assigned to phage subcluster DG1 and PokyPuppy to subcluster CS2.  more » « less
Award ID(s):
1826758
PAR ID:
10514685
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Editor(s):
Stedman, Kenneth M
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Microbiology Resource Announcements
Volume:
11
Issue:
11
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The gene annotation of the Mycobacterium phage Inverness was performed to establish certain genetic characteristics and qualities of the phage. Our research was designed to investigate the potential usefulness of this phage for medical purposes as part of the SEA-PHAGES project. Due to the decline in effectiveness of antibiotics when treating bacterial diseases, demand for alternative therapies and treatment has grown substantially. Phages have the potential to meet this demand. The genome of Inverness was found to be 68,264 base pairs in length, to possess a GC content of 66.5%, and to contain 99 protein-coding genes. Based on nucleotide similarities, the Mycobacterium phage Inverness was placed into cluster B and subcluster B1. The 33 genes with identifiable functions had an almost even split between rightward (49.49%) and leftward (50.51%) oriented genes. No putative function could be identified for 66 genes.  No tRNAs were found to be present within the genome for this specific phage. It should also be noted that, among those genes with identified functions, two codes for lysins, which are proteins that kill bacteria cells. This suggests potential future opportunities to use this phage as a treatment for certain cases of antibiotic resistant infections. 
    more » « less
  2. Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to theCrassviralesorder. Despite identifying over 600Crassviralesgenomes computationally, only few have been successfully isolated. Continued efforts in isolation of moreCrassviralesgenomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting variousBacteroideshosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novelCrassviralesspecies infectingBacteroides cellulosilyticusWH2. These species,Kehishuvirussp. ‘tikkala’ strain Bc01,Kolpuevirussp. ‘frurule’ strain Bc03, and ‘Rudgehvirus jaberico’ strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully culturedCrassviralesspecies and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present threeCrassviralesspecies as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome. 
    more » « less
  3. Abstract BackgroundMost phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages.Hamiltonella defensais a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. MethodsWe conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. ResultsEach APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities withBordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonusspp.) and enteric bacteria in the familyMorganellaceae. ConclusionsAPSEs are most closely related to phage elements in the genusArsenophonusand other bacteria in theMorganellaceae. 
    more » « less
  4. Dudley, Edward G. (Ed.)
    ABSTRACT Bacteriophages (phages) are currently available for use by the food industry to control the foodborne pathogen Listeria monocytogenes . Although phage biocontrols are effective under specific conditions, their use can select for phage-resistant bacteria that repopulate phage-treated environments. Here, we performed short-term coevolution experiments to investigate the impact of single phages and a two-phage cocktail on the regrowth of phage-resistant L. monocytogenes and the adaptation of the phages to overcome this resistance. We used whole-genome sequencing to identify mutations in the target host that confer phage resistance and in the phages that alter host range. We found that infections with Listeria phages LP-048, LP-125, or a combination of both select for different populations of phage-resistant L. monocytogenes bacteria with different regrowth times. Phages isolated from the end of the coevolution experiments were found to have gained the ability to infect phage-resistant mutants of L. monocytogenes and L. monocytogenes strains previously found to be broadly resistant to phage infection. Phages isolated from coinfected cultures were identified as recombinants of LP-048 and LP-125. Interestingly, recombination events occurred twice independently in a locus encoding two proteins putatively involved in DNA binding. We show that short-term coevolution of phages and their hosts can be utilized to obtain mutant and recombinant phages with adapted host ranges. These laboratory-evolved phages may be useful for limiting the emergence of phage resistance and for targeting strains that show general resistance to wild-type (WT) phages. IMPORTANCE Listeria monocytogenes is a life-threatening bacterial foodborne pathogen that can persist in food processing facilities for years. Phages can be used to control L. monocytogenes in food production, but phage-resistant bacterial subpopulations can regrow in phage-treated environments. Coevolution experiments were conducted on a Listeria phage-host system to provide insight into the genetic variation that emerges in both the phage and bacterial host under reciprocal selective pressure. As expected, mutations were identified in both phage and host, but additionally, recombination events were shown to have repeatedly occurred between closely related phages that coinfected L. monocytogenes . This study demonstrates that in vitro evolution of phages can be utilized to expand the host range and improve the long-term efficacy of phage-based control of L. monocytogenes . This approach may also be applied to other phage-host systems for applications in biocontrol, detection, and phage therapy. 
    more » « less
  5. null (Ed.)
    Tailed phages are the most abundant and diverse group of viruses on the planet. Yet, the smallest tailed phages display relatively complex capsids and large genomes compared to other viruses. The lack of tailed phages forming the common icosahedral capsid architectures T = 1 and T = 3 is puzzling. Here, we extracted geometrical features from high-resolution tailed phage capsid reconstructions and built a statistical model based on physical principles to predict the capsid diameter and genome length of the missing small-tailed phage capsids. We applied the model to 3348 isolated tailed phage genomes and 1496 gut metagenome-assembled tailed phage genomes. Four isolated tailed phages were predicted to form T = 3 icosahedral capsids, and twenty-one metagenome-assembled tailed phages were predicted to form T < 3 capsids. The smallest capsid predicted was a T = 4/3 ≈ 1.33 architecture. No tailed phages were predicted to form the smallest icosahedral architecture, T = 1. We discuss the feasibility of the missing T = 1 tailed phage capsids and the implications of isolating and characterizing small-tailed phages for viral evolution and phage therapy. 
    more » « less