skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: A Novel Emergent Constraint Approach for Refining Regional Climate Model Projections of Peak Flow Timing
Abstract

Global climate models (GCMs) are unable to produce detailed runoff conditions at the basin scale. Assumptions are commonly made that dynamical downscaling can resolve this issue. However, given the large magnitude of the biases in downscaled GCMs, it is unclear whether such projections are credible. Here, we use an ensemble of dynamically downscaled GCMs to evaluate this question in the Sierra‐Cascade mountain range of the western US. Future projections across this region are characterized by earlier seasonal shifts in peak flow, but with substantial inter‐model uncertainty (−25 ± 34.75 days, 95% confidence interval (CI)). We apply the emergent constraint (EC) method for the first time to dynamically downscaled projections, leading to a 39% (−28.25 ± 20.75 days, 95% CI) uncertainty reduction in future peak flow timing. While the constrained results can differ from bias corrected projections, the EC is based on GCM biases in historical peak flow timing and has a strong physical underpinning.

 
more » « less
Award ID(s):
2303610
NSF-PAR ID:
10514783
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As communities prepare for the impacts of climate change, policy makers and stakeholders increasingly require locally resolved projections of future climate. Statistical downscaling uses low‐resolution outputs from climate models and historical observations to both enhance the spatial resolution and correct for systematic biases. By examining the downscaled rainfall over land, we show that although bias corrections are effective in reducing biases in the current climate, they do not reduce the intermodel spread in future rainfall projections. This failure stems from the strong dependence of future rainfall change upon the current climatological rainfall patterns. Even after bias corrections are applied, the downscaled projections of precipitation change retain this dependence upon their native climatology. However, we show that this dependence can be exploited; even very simple methods to subset models according to their ability to resolve the observed rainfall climatology can substantially reduce the intermodel spread in rainfall projections.

     
    more » « less
  2. Reliable projections of future changes in tropical cyclone (TC) characteristics are highly dependent on the ability of global climate models (GCMs) to simulate the observed characteristics of TCs (i.e., their frequency, genesis locations, movement, and intensity). Here, we investigate the performance of a suite of GCMs from the U.S. CLIVAR Working Group on Hurricanes in simulating observed climatological features of TCs in the Southern Hemisphere. A subset of these GCMs is also explored under three idealized warming scenarios. Two types of simulated TC tracks are evaluated on the basis of a commonly applied cluster analysis: 1) explicitly simulated tracks, and 2) downscaled tracks, derived from a statistical–dynamical technique that depends on the models’ large-scale environmental fields. Climatological TC properties such as genesis locations, annual frequency, lifetime maximum intensity (LMI), and seasonality are evaluated for both track types. Future changes to annual frequency, LMI, and the latitude of LMI are evaluated using the downscaled tracks where large sample sizes allow for statistically robust results. An ensemble approach is used to assess future changes of explicit tracks owing to their small number of realizations. We show that the downscaled tracks generally outperform the explicit tracks in relation to many of the climatological features of Southern Hemisphere TCs, despite a few notable biases. Future changes to the frequency and intensity of TCs in the downscaled simulations are found to be highly dependent on the warming scenario and model, with the most robust result being an increase in the LMI under a uniform 2°C surface warming.

     
    more » « less
  3. Abstract

    Projecting species’ responses to future climate conditions is critical for anticipating conservation challenges and informing proactive policy and management decisions. However, best practices for choosing climate models for projection ensembles are currently in flux. We compared including a maximum number of models against trimming ensembles based on model validation. This was done within the emerging practice of ensemble building using an increasingly larger number of global climate models (GCMs) for future projections. We used recently reported estimates on primary drivers of population fluctuations for the migratory monarch butterfly (Danaus plexippus) to examine how multiple sources of uncertainty impact population forecasts for a well‐studied species. We compared mean spring temperature and precipitation observed in Texas from 1980 to 2005 with predictions from 16 GCMs to determine which of the models performed best. We then built tailored climate projections accumulating both temperature (in the form of growing degree days) and rainfall using both “complete” (all 16) and “trimmed” (best‐performing) ensembles based on three emission scenarios. We built the tailored projections of spring growing conditions to assess the range of possible climate outcomes and their potential impacts on monarch development. Results were similar when mean predictions were compared between trimmed and complete ensembles. However, when daily projections and uncertainty were accumulated over the entire spring season, we showed substantial differences between ensembles in terms of possible ecological outcomes. Ensembles that used all 16 GCMs included so much uncertainty that projections for future spring conditions ranged from being too cold to too hot for monarch development. GCMs based on best‐performing metrics provided much more useful information, projecting higher spring temperatures for developing monarch larvae in the future which could lead to larger summer populations but also suggesting risk from excessive heat. When there is a strong basis for identifying mechanistic drivers of population dynamics, our results support using a smaller subset of validated GCMs to bracket a range of the most defensible future environmental conditions tailored to the species of interest. Yet understating uncertainty remains a risk, and we recommend clearly articulating the rationale and consequences of selecting GCMs for long‐term projections.

     
    more » « less
  4. Abstract

    The earth's hydroclimate is continuing to change, and the corresponding impacts on water resource space‐time distribution need to be understood to mitigate their socioeconomic consequences. A variety of ecosystem services, transport processes, and human activities are synced with thetimingof peak annual runoff. To understand the influence of changing hydroclimate on peak runoff dates across the continental United States, we downscaled outputs of 10 Global Circulation Models for different future scenarios. Our results quantify robust spatial patterns of both negative (up to 3–5 weeks) and positive (up to 2–4 weeks) shifts in the dates of peak annual runoff occurrence by the end of this century. In snowmelt‐dominated areas, annual maxima are projected to shift to earlier dates due to the corresponding changes in snow accumulation timing. For regions in which the occurrence of springtime extreme soil wetness shifts to later time, we find that peak annual runoff is also projected to be delayed. These patterns of runoff timing change tend to be more pronounced for projections of higher greenhouse concentration in the future.

     
    more » « less
  5. Abstract

    Climate change projections provided by global climate models (GCM) are generally too coarse for local and regional applications. Local and regional climate change impact studies therefore use downscaled datasets. While there are studies that evaluate downscaling methodologies, there is no study comparing the downscaled datasets that are actually distributed and used in climate change impact studies, and there is no guidance for selecting a published downscaled dataset. We compare five widely used statistically downscaled climate change projection datasets that cover the conterminous USA (CONUS): ClimateNA, LOCA, MACAv2-LIVNEH, MACAv2-METDATA, and NEX-DCP30. All of the datasets are derived from CMIP5 GCMs and are publicly distributed. The five datasets generally have good agreement across CONUS for Representative Concentration Pathways (RCP) 4.5 and 8.5, although the agreement among the datasets vary greatly depending on the GCM, and there are many localized areas of sharp disagreements. Areas of higher dataset disagreement emerge over time, and their importance relative to differences among GCMs is comparable between RCP4.5 and RCP8.5. Dataset disagreement displays distinct regional patterns, with greater disagreement in △Tmax and △Tmin in the interior West and in the North, and disagreement in △P in California and the Southeast. LOCA and ClimateNA are often the outlier dataset, while the seasonal timing of ClimateNA is somewhat shifted from the others. To easily identify regional study areas with high disagreement, we generated maps of dataset disagreement aggregated to states, ecoregions, watersheds, and forests. Climate change assessment studies can use the maps to evaluate and select one or more downscaled datasets for their study area.

     
    more » « less