skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tracing a subglacial Precambrian geologic boundary in Greenland through gravity and magnetic profiles
Geological evidence of the terrane boundary between the Nagssugtoquidian orogeny and the North Atlantic Craton is present in exposed rocks on both the east and west coasts of Greenland. The subglacial continuation of this boundary must be inferred from geophysical data across the Greenland ice sheet. Several possible locations have been suggested, based on combinations of regional grids of gravity and magnetic anomalies. We use high-resolution, flight-line profiles of gravity and magnetics data from Operation Ice Bridge (OIB) to investigate both the location and the nature of the boundary. Using Geosoft we modeled the density and susceptibility contrasts associated with previously proposed locations of the terrane boundary (Dawes, 2009 and Henricksen et al., 2009), and found evidence for several additional boundaries with significant contrasts in geophysical properties. We present a series of 2D profile models and map the most significant boundaries to reveal a more complex image of the subglacial geology beneath the Greenland ice sheet.  more » « less
Award ID(s):
2050923
PAR ID:
10514878
Author(s) / Creator(s):
; ; ;
Editor(s):
Tinto, K
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Proceedings American Geophysical Union
Edition / Version:
Final
Volume:
0
Issue:
0
Page Range / eLocation ID:
ED21D-0764
Subject(s) / Keyword(s):
Geophysics Greenland: Nagssugtoquidian Archean Proterozoic
Format(s):
Medium: X Size: 2 MB Other: pdfA
Size(s):
2 MB
Location:
San Francisco, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Changes in ocean temperature and salinity are expected to be an important determinant of the Greenland ice sheet's future sea level contribution. Yet, simulating the impact of these changes in continental-scale ice sheet models remains challenging due to the small scale of key physics, such as fjord circulation and plume dynamics, and poor understanding of critical processes, such as calving and submarine melting. Here we present the ocean forcing strategy for Greenland ice sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change Sixth Assessment Report. Beginning from global atmosphere–ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland ice sheet models, termed the “retreat” and “submarine melt” implementations. The retreat implementation parameterises glacier retreat as a function of projected subglacial discharge and ocean thermal forcing, is designed to be implementable by all ice sheet models and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios, respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly constrained parameterisations and, as such, further research on submarine melting, calving and fjord–shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland ice sheet models to be systematically and consistently forced by the ocean for the first time and should result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change. 
    more » « less
  2. The Princess Elizabeth Land sector of the East Antarctic Ice Sheet is a significant reservoir of grounded ice and is adjacent to regions that experienced great change during Quaternary glacial cycles and Pliocene warm episodes. The existence of an extensive subglacial water system in Princess Elizabeth Land (to date only inferred from satellite imagery) bears the potential to significantly impact the thermal and kinematic conditions of the overlying ice sheet. We confirm the existence of a major subglacial lake, herein referred to as Lake Snow Eagle (LSE), for the first time using recently acquired aerogeophysical data. We systematically investigated LSE’s geological characteristics and bathymetry from two-dimensional geophysical inversion models. The inversion results suggest that LSE is located along a compressional geologic boundary, which provides reference for future characterization of the geologic and tectonic context of this region. We estimate LSE to be ~42 km in length and 370 km2 in area, making it one of the largest subglacial lakes in Antarctica. Additionally, the airborne ice-penetrating radar observations and geophysical inversions reveal a layer of unconsolidated water-saturated sediment around and at the bottom of LSE, which—given the ultralow rates of sedimentation expected in such environments—may archive valuable records of paleoenvironmental changes and the early history of East Antarctic Ice Sheet evolution in Princess Elizabeth Land. 
    more » « less
  3. Abstract Ice-sheet volume during Marine Isotope Stage (MIS) 3 (57–29 ka) is controversial. Several recent studies have proposed that the Greenland Ice Sheet was smaller during MIS 3 than it is today based on radiocarbon ages of molluscan bivalve shells reworked into sedimentary deposits adjacent to the present ice margin. Such a result contrasts with available records of MIS 3 climate, ice volume, and sea level. We revisited a site previously interpreted as containing evidence for smaller than present ice during MIS 3. We collected marine bivalve shells and combined progressive acid dissolution in preparation for radiocarbon dating with new-generation amino acid analysis, which focuses on aspartic acid racemization. Our results suggest that contamination by young carbon yields finite radiocarbon ages despite bivalve shells likely dating to MIS 5e (∼125 ka) or even older. This result should be further tested, which could be accomplished with additional studies of this kind in combination with ice-sheet modeling and additional paleoclimate data generated from adjacent seas. 
    more » « less
  4. Past interglacial climates with smaller ice sheets offer analogs for ice sheet response to future warming and contributions to sea level rise; however, well-dated geologic records from formerly ice-free areas are rare. Here we report that subglacial sediment from the Camp Century ice core preserves direct evidence that northwestern Greenland was ice free during the Marine Isotope Stage (MIS) 11 interglacial. Luminescence dating shows that sediment just beneath the ice sheet was deposited by flowing water in an ice-free environment 416 ± 38 thousand years ago. Provenance analyses and cosmogenic nuclide data and calculations suggest the sediment was reworked from local materials and exposed at the surface <16 thousand years before deposition. Ice sheet modeling indicates that ice-free conditions at Camp Century require at least 1.4 meters of sea level equivalent contribution from the Greenland Ice Sheet. 
    more » « less
  5. Abstract The landscape hidden beneath the Greenland Ice Sheet remains one of the most sparsely mapped regions on Earth, but offers a unique record of environmental conditions prior to and during widespread glaciation, and of the ice sheet's response to changing climates. In particular, subglacial valleys observed across Greenland may preserve geomorphological information pertaining to landscape and ice sheet evolution. Here we analyze the morphology of a subglacial valley network in northern Greenland using bed elevation measurements acquired during multi‐year airborne radio‐echo sounding surveys. Channel profile morphologies are consistent with a primarily fluvial origin of the network, with evidence for localized modification by ice and/or meltwater. Gravity and magnetic anomalies suggest that the spatial organisation of the valley network is influenced by regional‐scale geological structure, implying a long‐lived and well‐established hydrological system. We also document two knickzones in the valley longitudinal profile and terraces above the channel floor in the lower course of the network. These observations, combined with stream power modeling, indicate that northern Greenland experienced two episodes of relative base level fall during the Neogene (∼150 m at ca. 12–3.7 Ma and ∼380 m at ca. 8.2–2.8 Ma) that resulted in channel profile adjustment via incision and knickzone retreat. The timing of the inferred base level fall correlates with other onshore and offshore records of uplift, denudation, and/or relative sea level change, and we suggest that tectonic and/or mantle‐driven uplift played an important role in the genesis of the modern landscape of northern Greenland. 
    more » « less