skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Comparison of End-to-End Decision Forest Inference Pipelines
Decision forest, including RandomForest, XGBoost, and Light-GBM, dominates the machine learning tasks over tabular data. Recently, several frameworks were developed for decision forest inference, such as ONNX, TreeLite from Amazon, TensorFlow Decision Forest from Google, HummingBirdfrom Microsoft, Nvidia FIL, and lleaves. While these frameworks are fully optimized for inference computations, they are all decoupled with databases and general data management frameworks, which leads to cross-system performance overheads. We first provided a DICT model to understand the performance gaps between decoupled and in-database inference. We further identified that for in-database inference, in addition to the popular UDF-centric representation that encapsulates the ML into one User Defined Function(UDF), there also exists a relation-centric representation that breaks down the decision forest inference into several fine-grained SQL operations. The relation-centric representation can achieve significantly better performance for large models. We optimized both implementations and conducted a comprehensive benchmark to compare these two implementations to the aforementioned decoupled inference pipelines and existing in-database inference pipelines such as Spark-SQL and PostgresML. The evaluation results validated the DICT model and demonstrated the superior performance of our in-database inference design compared to the baselines.  more » « less
Award ID(s):
2144923
PAR ID:
10514881
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of 2023 ACM Symposium on Cloud Computing (SoCC'23)
ISBN:
9798400703874
Page Range / eLocation ID:
200 to 215
Format(s):
Medium: X
Location:
Santa Cruz CA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains, sparking growing interest recently. In this visionary paper, we embark on a comprehensive exploration of representative architectures to address the requirement. We highlight three pivotal paradigms: The state-of-the-art \textit{DL-centric} architecture offloads DL computations to dedicated DL frameworks. The potential \textit{UDF-centric} architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS). The potential \textit{relation-centric} architecture aims to represent a large-scale tensor computation through relational operators. While each of these architectures demonstrates promise in specific use scenarios, we identify urgent requirements for seamless integration of these architectures and the middle ground in-between these architectures. We delve into the gaps that impede the integration and explore innovative strategies to close them. We present a pathway to establish a novel RDBMS for enabling a broad class of data-intensive DL inference applications. 
    more » « less
  2. Machine learning has shown tremendous potential for improving the capabilities of network traffic analysis applications, often outperforming simpler rule-based heuristics. However, ML-based solutions remain difficult to deploy in practice. Many existing approaches only optimize the predictive performance of their models, overlooking the practical challenges of running them against network traffic in real time. This is especially problematic in the domain of traffic analysis, where the efficiency of the serving pipeline is a critical factor in determining the usability of a model. In this work, we introduce CATO, a framework that addresses this problem by jointly optimizing the predictive performance and the associated systems costs of the serving pipeline. CATO leverages recent advances in multi-objective Bayesian optimization to efficiently identify Pareto-optimal configurations, and automatically compiles end-to-end optimized serving pipelines that can be deployed in real networks. Our evaluations show that compared to popular feature optimization techniques, CATO can provide up to 3600× lower inference latency and 3.7× higher zero-loss throughput while simultaneously achieving better model performance. 
    more » « less
  3. The performance of inference with machine learning (ML) models and its integration with analytical query processing have become critical bottlenecks for data analysis in many organizations. An ML inference pipeline typically consists of a preprocessing workflow followed by prediction with an ML model. Current approaches for in-database inference implement preprocessing operators and ML algorithms in the database either natively, by transpiling code to SQL, or by executing user-defined functions in guest languages such as Python. In this work, we present a radically different approach that approximates an end-to-end inference pipeline (preprocessing plus prediction) using a light-weight embedding that discretizes a carefully selected subset of the input features and an index that maps data points in the embedding space to aggregated predictions of an ML model. We replace a complex preprocessing workflow and model-based inference with a simple feature transformation and an index lookup. Our framework improves inference latency by several orders of magnitude while maintaining similar prediction accuracy compared to the pipeline it approximates. 
    more » « less
  4. Vector databases have recently gained significant attention due to the emergence of large language models that produce vector embeddings for text. Existing vector databases can be broadly categorized into two types: specialized and generalized. Specialized vector databases are explicitly designed and optimized for managing vector data, while generalized ones support vector data management within a general purpose database. While specialized vector databases are interesting, there is a substantial customer base interested in generalized vector databases for various reasons, e.g., a reluctance to move data out of relational databases to reduce data silos and costs, the desire to use SQL, and the need for more sophisticated query processing of vector and non-vector data. However, generalized vector databases face two main challenges: performance and interoperability of vector search with SQL, such as combining vector search with filters, joins, or even fulltext search. In this paper, we present SingleStore-V, a full-fledged generalized vector database integrated into SingleStore, a modern distributed relational database optimized for both OLAP and OLTP workloads. SingleStore-V achieves high performance and interoperability via a suite of optimizations. Experiments on standard vector benchmarks show that SingleStore-V performs comparably to Milvus, a highly-optimized specialized vector database, and significantly outperforms pgvector, a popular generalized vector database in PostgreSQL. We believe this paper will shed light on integrating vector search into relational databases in general, as many design concepts and optimizations apply to other databases. 
    more » « less
  5. null (Ed.)
    Relational database management systems (RDBMS) have limited iterative processing support. Recursive queries were added to ANSI SQL, however, their semantics do not allow aggregation functions, which disqualifies their use for several applications, such as PageRank and shortest path computations. Recently, another SQL extension, iterative Common Table Expressions (CTEs), is proposed to enable users to perform general iterative computations on RDBMSs.In this work 1 , we demonstrate how iterative CTEs can be efficiently incorporated into a production RDBMS without major intrusion to the system. We have prototyped our approach on Futurewei's MPPDB, a shared nothing relational parallel database engine. The implementation is based on a functional rewrite that translates iterative CTEs to other existing SQL operators. Thus, query plans of iterative CTEs can be optimized and executed by the engine with minimal modification to the code base. We have also applied several optimizations specifically for iterative CTEs to i) minimize data movement, ii) reuse results that remain constant and iii) push down predicates to avoid unnecessary data processing. We verified our implementation through extensive experimental evaluation using real world datasets and queries. The results show the feasibility of the rewrite approach and the effectiveness of the optimizations, which improve performance by an order of magnitude in some cases. 
    more » « less