skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 19, 2025

Title: A Simple Mobile Plausibly Deniable System Using Image Steganography and Secure Hardware
Traditional encryption methods cannot defend against coercive attacks in which the adversary captures both the user and the possessed computing device, and forces the user to disclose the decryption keys. Plausibly deniable encryption (PDE) has been designed to defend against this strong coercive attacker. At its core, PDE allows the victim to plausibly deny the very existence of hidden sensitive data and the corresponding decryption keys upon being coerced. Designing an efficient PDE system for a mobile platform, however, is challenging due to various design constraints bound to the mobile systems. Leveraging image steganography and the built-in hardware security feature of mobile devices, namely TrustZone, we have designed a Simple Mobile Plausibly Deniable Encryption (SMPDE) system which can combat coercive adversaries and, meanwhile, is able to overcome unique design constraints. In our design, the encoding/decoding process of image steganography is bounded together with Arm TrustZone. In this manner, the coercive adversary will be given a decoy key, which can only activate a DUMMY trusted application that will instead sanitize the sensitive information stored hidden in the stego-image upon decoding. On the contrary, the actual user can be given the true key, which can activate the PDE trusted application that can really extract the sensitive information from the stego-image upon decoding. Security analysis and experimental evaluation justify both the security and the efficiency of our design.  more » « less
Award ID(s):
1928349 2225424
PAR ID:
10514891
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 2024 ACM Workshop on Secure and Trustworthy Cyber-Physical Systems (SaT-CPS '24)
ISBN:
9798400705557
Page Range / eLocation ID:
21 to 29
Format(s):
Medium: X
Location:
Porto Portugal
Sponsoring Org:
National Science Foundation
More Like this
  1. Mobile computing devices are widely used in our daily life. With their increased use, a large amount of sensitive data are collected, stored, and managed in the mobile devices. To protect sensitive data, encryption is often used but, traditional encryption is vulnerable to coercive attacks in which the device owner is coerced by the adversary to disclose the decryption key. To defend against the coercive attacks, Plausibly Deniable Encryption (PDE) has been designed which can allow the victim user to deny the existence of hidden sensitive data. The PDE systems have been explored broadly for smartphones. However, the PDE systems which are suitable for wearable mobile devices are still missing in the literature. In this work, we design MobiWear, the first PDE system specifically for wearable mobile devices. To accommodate the hardware nature of wearable devices, MobiWear: 1) uses image steganography to achieve PDE, which suits the resource-limited wearable devices; and 2) relies on various sensors equipped with the wearable devices to input passwords, rather than requiring users to enter them via a keyboard or a touchscreen. Security analysis and experimental evaluation using a real-world prototype (ported to an LG G smartwatch) show that MobiWear can ensure deniability with a small computational overhead as well as a small decrease of image quality. 
    more » « less
  2. Lin, Jingqiang; Tang, Qiang (Ed.)
    Nowadays, mobile devices have been used broadly to store and process sensitive data. To ensure confidentiality of the sensitive data, Full Disk Encryption (FDE) is often integrated in mainstream mobile operating systems like Android and iOS. FDE however cannot defend against coercive attacks in which the adversary can force the device owner to disclose the decryption key. To combat the coercive attacks, Plausibly Deniable Encryption (PDE) is leveraged to plausibly deny the very existence of sensitive data. However, most of the existing PDE systems for mobile devices are deployed at the block layer and suffer from deniability compromises. Having observed that none of existing works in the literature have experimentally demonstrated the aforementioned compromises, our work bridges this gap by experimentally confirming the deniability compromises of the block-layer mobile PDE systems. We have built a mobile device testbed, which consists of a host computing device and a flash storage device. Additionally, we have deployed both the hidden volume-based PDE and the steganographic file system-based PDE at the block layer of our testbed and performed disk forensics to assess potential compromises on the raw NAND flash. Our experimental results confirm it is indeed possible for the adversary to compromise the block-layer PDE systems when the adversary can have access to the raw NAND flash in real world. We also discuss practical issues when performing such attacks in practice. 
    more » « less
  3. Li, Fengjun; Liang, Kaitai; Lin, Zhiqiang; Katsikas, Sokratis K. (Ed.)
    Mobile computing devices have been used to store and process sensitive or even mission critical data. To protect sensitive data in mobile devices, encryption is usually incorporated into major mobile operating systems. However, traditional encryption can not defend against coercive attacks in which victims are forced to disclose the key used to decrypt the sensitive data. To combat the coercive attackers, plausibly deniable encryption (PDE) has been introduced which can allow the victims to deny the existence of the sensitive data. However, the existing PDE systems designed for mobile devices are either insecure (i.e., suffering from deniability compromises) or impractical (i.e., unable to be compatible with the storage architecture of mainstream mobile devices, not lightweight, or not user-oriented). In this work, we design CrossPDE, the first cross-layer mobile PDE system which is secure, being compatible with the storage architecture of mainstream mobile devices, lightweight as well as user-oriented. Our key idea is to intercept major layers of a mobile storage system, including the file system layer (preventing loss of hidden sensitive data and enabling users to use the hidden mode), the block layer (taking care of expensive encryption and decryption), and the flash translation layer (eliminating traces caused by the hidden sensitive data). Experimental evaluation on our real-world prototype shows that CrossPDE can ensure deniability with a modest decrease in throughput. 
    more » « less
  4. Modern mobile devices are increasingly used to store and process sensitive data. In order to prevent the sensitive data from being leaked, one of the best ways of protecting them and their owner is to hide the data with plausible deniability. Plausibly Deniable Encryption (PDE) has been designed for such purpose. The existing PDE systems for mobile devices however, have suffered from significant drawbacks as they either ignore the deniability compromises present in the special underlying storage media of mobile devices or are vulnerable to various new attacks such as side-channel attacks. In this work, we propose a new PDE system design for mobile devices which takes advantage of the hardware features equipped in the mainstream mobile devices. Our preliminary design has two major component: First, we strictly isolate the hidden and the public data in the flash layer, so that a multi-snapshot adversary is not able to identify the existence of the hidden sensitive data when having access to the low layer storage medium of the device. Second, we incorporate software and operating system level deniability into ARM TrustZone. With this TrustZone-enhanced isolation, our PDE system is immune to side-channel attacks at the operating system layer. 
    more » « less
  5. We introduce MobiCeal, the first practical Plausibly Deniable Encryption (PDE) system for mobile devices that can defend against strong coercive multi-snapshot adversaries, who may examine the storage medium of a user’s mobile device at different points of time and force the user to decrypt data. MobiCeal relies on “dummy write” to obfuscate the differences between multiple snapshots of storage medium due to data encryption. By combining a tweaked thin provisioning with block- level encryption, MobiCeal supports a broad deployment of any block-based file systems on mobile devices. More importantly, MobiCeal is secure against side channel attacks which pose a serious threat to existing PDE schemes. A new fast switching mechanism is also introduced in MobiCeal to help users switch from the public mode to the hidden mode within 10 seconds. It is shown that the performance of MobiCeal is significantly better than prior PDE systems against multi-snapshot adversaries. 
    more » « less