Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species.
more »
« less
Molecular spectroscopy as a laboratory experiment: Measurement of important parameters of sodium diatomic molecules
We present an inexpensive sodium molecular spectroscopy experiment for use in an advanced undergraduate laboratory course in physics or chemistry. The molecules were excited predominantly from the ground X1Σg+(v″ = 15) state to the B1Πu(v′ = 6) state using a commercially available 532-nm broadband diode laser. The laser-induced molecular fluorescence was measured using a miniature fiber-coupled spectrometer at a resolution of 0.5 nm. The spectral peak assignments were done by comparing the observed spectrum with the calculated Franck–Condon values. Important molecular constants such as fundamental frequency, anharmonicity, bond strength, and dissociation energy of the ground electronic state were determined by using the Birge–Sponer extrapolation method. The presence of highly visible blue glowing molecules along the green laser beam creates an engaging laboratory experience. Emphasis is placed on students developing their understanding of the molecular structure, practicing molecular spectroscopic techniques, and applying knowledge of light–matter interactions to a physical system.
more »
« less
- Award ID(s):
- 2309340
- PAR ID:
- 10514918
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- American Journal of Physics
- Volume:
- 91
- Issue:
- 12
- ISSN:
- 0002-9505
- Page Range / eLocation ID:
- 1015 to 1022
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a high-power tunable deep-ultraviolet (DUV) laser that uses two consecutive cavity enhanced doubling stages with LBO and CLBO crystals to produce the fourth harmonic of an amplified homebuilt external cavity diode laser. The system generates up to 2.75 W of 261.5 nm laser light with a ∼2 W stable steady-state output power and performs second harmonic generation in a largely unexplored high intensity regime in CLBO for continuous wave DUV light. We use this laser to perform fluorescence spectroscopy on theA1Π ← X1Σ+transition in a cold, slow beam of AlCl molecules and probe the A1Π|v′ = 0,J′ = 1〉 state hyperfine structure for future laser cooling and trapping experiments. This work demonstrates that the production of tunable, watt-level DUV lasers is becoming routine for a variety of wavelength-specific applications in atomic, molecular and optical physics.more » « less
-
The D 5 Π–X 5 Δ (0,0) band of vanadium hydride at 654 nm has been recorded by laser excitation spectroscopy and represents the first analyzed spectrum of VH in the gas phase. The molecules were generated using a hollow cathode discharge source, with laser-induced fluorescence detected via the D 5 Π–A 5 Π (0,0) transition. All five main (ΔΩ = ΔΛ) subbands were observed as well as several satellite ones, which together create a rather complex and overlapped spectrum covering the region 15 180–15 500 cm −1 . The D 5 Π state displays the effects of three strong local perturbations, which are likely caused by interactions with high vibrational levels of the B 5 Σ − and c 3 Σ − states, identified in a previous multiconfigurational self-consistent field study by Koseki et al. [J. Phys. Chem. A 108, 4707 (2004)]. Molecular constants describing the X 5 Δ, A 5 Π, and D 5 Π states were determined in three separate least-squares fits using effective Hamiltonians written in a Hund’s case (a) basis. The fine structure of the ground state is found to be consistent with its assignment as a σπ 2 δ, 5 Δ electronic state. The fitted values of its first-order spin–orbit and rotational constants in the ground state are [Formula: see text] and B = 5.7579(13) cm −1 , the latter of which yields a bond length of [Formula: see text] Å. This experimental value is in good agreement with previous computational studies of the molecule and fits well within the overall trend of decreasing bond length across the series of 3d transition metal monohydrides.more » « less
-
Here, we describe our pulsed helium droplet apparatus for spectroscopy of molecular ions. Our approach involves the doping of the droplets of about 10 nm in diameter with precursor molecules, such as ethylene, followed by electron impact ionization. Droplets containing ions are irradiated by the pulsed infrared laser beam. Vibrational excitation of the embedded cations leads to the evaporation of the helium atoms in the droplets and the release of the free ions, which are detected by the quadrupole mass spectrometer. In this work, we upgraded the experimental setup by introducing an octupole RF collision cell downstream from the electron impact ionizer. The implementation of the RF ion guide increases the transmission efficiency of the ions. Filling the collision cell with additional He gas leads to a decrease in the droplet size, enhancing sensitivity to the laser excitation. We show that the spectroscopic signal depends linearly on the laser pulse energy, and the number of ions generated per laser pulse is about 100 times greater than in our previous experiments. These improvements facilitate faster and more reproducible measurements of the spectra, yielding a handy laboratory technique for the spectroscopic study of diverse molecular ions and ionic clusters at low temperature (0.4 K) in He droplets.more » « less
-
Abstract Advances in x-ray free electron lasers have made ultrafast scattering a powerful method for investigating molecular reaction kinetics and dynamics. Accurate measurement of the ground-state, static scattering signals of the reacting molecules is pivotal for these pump-probe x-ray scattering experiments as they are the cornerstone for interpreting the observed structural dynamics. This article presents a data calibration procedure, designed for gas-phase x-ray scattering experiments conducted at the Linac Coherent Light Source x-ray Free-Electron Laser at SLAC National Accelerator Laboratory, that makes it possible to derive a quantitative dependence of the scattering signal on the scattering vector. A self-calibration algorithm that optimizes the detector position without reference to a computed pattern is introduced. Angle-of-scattering corrections that account for several small experimental non-idealities are reported. Their implementation leads to near quantitative agreement with theoretical scattering patterns calculated withab-initiomethods as illustrated for two x-ray photon energies and several molecular test systems.more » « less
An official website of the United States government

