Ganderia and the Southeastern New England Avalon terrane, are both terranes that rifted from Gondwana and accreted to North America in the early to mid-Paleozoic. Accretion of the Avalon terrane was accompanied by plutonism, deformation, and metamorphism including partial melting within the Nashoba terrane, the trailing edge of Ganderia and may be interpreted as indicators for mid- to lower-crustal channel flow. Channel flow describes the flow of weak, partially molten material between more competent crust as a result of pressure gradients in the mid- to lower crustal levels. Such flow should typically result in seismic anisotropy due to the crystallographic preferred orientations of minerals and shape preferred orientations at various scales. Here, we present a new method designed to analyze the crustal anisotropic structure beneath the Nashoba terrane and provide insight into its capabilities in a first application to permanent stations in the area and currently collected data. To investigate the hypothesis of crustal flow during the orogenic history of Southeastern New England, we deployed a dense profile of 6 broadband seismic stations crossing the Nashoba terrane. We analyze the harmonic variation of amplitudes in teleseismic P-Receiver Functions (RFs) to identify interfaces of isotropic and anisotropic contrasts within the crust. In the case of particularly prominent anisotropic features that have significantly larger amplitudes than other signals, it is feasible to derive quantitative constraints on the strength and orientation of the anisotropy. However, with growing complexity, a classical forward modelling or grid search approach becomes unfeasible. These difficulties can be mitigated by applying Bayesian inversion, which infers values of model parameters from a probabilistic perspective. Here we use a Bayesian framework to invert for the anisotropic model that best fits the observed constant and harmonic terms. Applying a Bayesian inversion to the harmonically decomposed RFs instead of full RF waveforms has the potential to infer the anisotropic seismic model more faithfully, without attempting to fit unrelated signals and artifacts. 
                        more » 
                        « less   
                    
                            
                            IMAGING LOWER CRUSTAL FLOW USING HARMONIC DECOMPOSITION OF RECEIVER FUNCTIONS BENEATH A DENSE SEISMIC PROFILE IN EASTERN MASSACHUSETTS
                        
                    
    
            Ganderia and the Southeastern New England Avalon terrane are both terranes that rifted from Gondwana and accreted to North America in the early to mid-Paleozoic. Accretion of the Avalon terrane was accompanied by plutonism, deformation, and metamorphism including partial melting within the Nashoba terrane, the trailing edge of Ganderia, and may be interpreted as indicators for mid- to lower-crustal channel flow. Channel flow describes the flow of weak, partially molten material between more competent crust as a result of pressure gradients in the mid- to lower crustal levels. Such flow should typically result in seismic anisotropy due to the crystallographic preferred orientations of minerals and shape preferred orientations at various scales. Here, we present first results for the crustal anisotropic structure beneath the Nashoba terrane that were produced with a newly developed approach from currently collected data in the region. To investigate the hypothesis of crustal flow during the orogenic history of Southeastern New England, we deployed a dense profile of 6 broadband seismic stations crossing the Nashoba terrane. We analyze the harmonic variation of amplitudes in teleseismic P-Receiver Functions (RFs) to identify interfaces of isotropic and anisotropic contrasts within the crust. In the case of particularly prominent anisotropic features that have significantly larger amplitudes than other signals, it is feasible to derive quantitative constraints on the strength and orientation of the anisotropy. However, with growing complexity, a classical forward modelling or grid search approach becomes unfeasible. These difficulties can be mitigated by applying Bayesian inversion, which infers values of model parameters from a probabilistic perspective. Applying a Bayesian inversion to the harmonically decomposed RFs has the potential to infer complex anisotropic seismic structures. We find evidence for two crustal anisotropic layers with confined properties to the geologic units of the Ganderia, Nashoba and Avalon terranes that might be related to episodes of lower crustal flow. In addition, we identify anisotropy at shallow mantle levels beneath the Nashoba and Avalon Terranes possibly indicating the upper interface of a shallow asthenosphere in the region. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2220233
- PAR ID:
- 10515069
- Publisher / Repository:
- Geological Society of America
- Date Published:
- Journal Name:
- Abstracts Geological Society of America
- Volume:
- 56
- Issue:
- 1
- ISSN:
- 0435-3986
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            During the early Paleozoic the terranes of Ganderia and Avalonia both rifted from Gondwana. They accreted to North America in the middle Paleozoic. The late Silurian-Devonian Acadian orogeny, as a result of accretion of Avalonia, originated folding, high-grade metamorphism and northwest-dipping shear zones within the Nashoba-Putnam terrane, the trailing edge of Ganderia. In addition, partial melting produced plutonic rocks in and to the northwest of the Nashoba terrane. These characteristics have previously been interpreted as a result of channel flow and ductile extrusion towards the southeast. In this study, we apply geologically informed seismic imaging to test the hypothesis of the potential occurrence of crustal flow in the tectonic history of the Appalachian orogeny. Such crustal flow is suggested to produce significant seismic anisotropy due to the alignment of minerals within the weakened crust of the flow zone. This anisotropy would result in a characteristic set of effects to the seismic wavefield, such as the splitting of shear-waves, directionally dependent travel-times of seismic phases and directionally varying conversions at boundaries of anisotropic domains. Such effects yield a harmonic pattern that can be best observed in receiver function imaging. We systematically analyze the coherent harmonic patterns in receiver functions along a new dense (~5 km spacing) seismic profile, known as the GENESIS array, that complements existing stations across the Nashoba terrane in Eastern Massachusetts. We identify harmonic signals in the upper and mid-crust and within the lithospheric mantle, suggesting differing mid-crustal anisotropy between two lateral blocks, which correlate well with Avalonia and Ganderia. While we don’t directly identify the contact zone of the two terranes in our imaging, the changes of structural and anisotropic patterns may be consistent with a northwest-dipping suture zone, which is based on geologic observations.more » « less
- 
            The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2015-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present results from these experiments that are shedding new light on the tectonic evolution of New England and the ways in which structures and processes in the upper mantle can affect the structure of the overlying lithosphere. These include detailed new images of crustal architecture beneath central and southern New England, including a sharp transition from thick (~48 km) crust Laurentia terranes to thin (~32 km) crust beneath Appalachian terranes. The character of this offset beneath the SEISConn and NEST arrays suggests an overlap of two Moho boundaries, forming an overthrust-type structure that may have resulted from reactivation of faults during the compression and shortening associated with the formation of the hypothesized Acadian Altiplano. Beneath SEISConn, there is evidence for multiple relict structures preserved in the lithosphere from past episodes of terrane accretion and suturing, as well as anisotropic layering that constrains the kinematics of past lithospheric deformation events. Beneath the NEST line in central New England, we infer a relatively shallow (~80 km) lithosphere-asthenosphere boundary above the NAA upper mantle geophysical anomaly, providing evidence for lithospheric thinning above a presumed asthenospheric upwelling. Finally, preliminary results suggest layered crustal anisotropy beneath the GENESIS array, perhaps corresponding to a past episode of channel flow in the mid-crust.more » « less
- 
            The New England Appalachians provide a fascinating window into a host of fundamental geological problems. These include the modification of crustal and mantle lithospheric structure via orogenesis, terrane accretion, and continental rifting, the evolution of individual terranes through processes such as channel flow and ductile extrusion, and the causes and consequences of the Northern Appalachian Anomaly (NAA), a prominent geophysical anomaly in the upper mantle. Recent and ongoing deployments of dense seismic arrays in New England are providing images of the crust and upper mantle in unprecedented detail, allowing us to address both new and longstanding science questions. These deployments include the Seismic Experiment for Imaging Structure beneath Connecticut (SEISConn, 2015-2019), the New England Seismic Transects (NEST, 2018-present), and the GEology of New England via Seismic Imaging Studies (GENESIS, 2022-present) arrays. Here we present results from these experiments that are shedding new light on the tectonic evolution of New England and the ways in which structures and processes in the upper mantle can affect the structure of the overlying lithosphere. These include detailed new images of crustal architecture beneath central and southern New England, including a sharp transition from thick (~48 km) crust Laurentia terranes to thin (~32 km) crust beneath Appalachian terranes. The character of this offset beneath the SEISConn and NEST arrays suggests an overlap of two Moho boundaries, forming an overthrust-type structure that may have resulted from reactivation of faults during the compression and shortening associated with the formation of the hypothesized Acadian Altiplano. Beneath SEISConn, there is evidence for multiple relict structures preserved in the lithosphere from past episodes of terrane accretion and suturing, as well as anisotropic layering that constrains the kinematics of past lithospheric deformation events. Beneath the NEST line in central New England, we infer a relatively shallow (~80 km) lithosphere-asthenosphere boundary above the NAA upper mantle geophysical anomaly, providing evidence for lithospheric thinning above a presumed asthenospheric upwelling. Finally, preliminary results suggest layered crustal anisotropy beneath the GENESIS array, perhaps corresponding to a past episode of channel flow in the mid-crust.more » « less
- 
            The Acadian orogeny resulted from the accretion of the southeastern New England Avalon Terrane (AT) to the Nashoba Terrane (NT) - the trailing edge of Ganderia - to its northwest, in eastern Massachusetts. Ganderia and the AT are mostly Gondwana-derived. Previously, rocks of the NT were interpreted to have been extruded to the southeast over the AT as part of a channel flow zone. Only the top and center of this zone are exposed in the NT. Bedrock and structural mapping were carried out in the AT adjacent to the NT to locate the bottom of the channel flow zone. The main rock types are migmatitic biotite gneiss and mafic rock, quartzite, and igneous rocks, exposed in 10s of m to km scale blocks and lenses. Some of these rocks have been sheared and show evidence of mylonitization. Furthermore, they occur near, and in two areas are crosscut by, igneous plutons of unknown age. The foliations of migmatitic rocks, quartzites, and mylonites predominately dip NW, but the orientations of the mylonites vary, especially away from the terrane boundary. Lineations plunge NE and SW in migmatites, NE in quartzites, and NW in mylonites. Migmatitic rocks show abundant isoclinal folds. Predominantly NW to SW dipping normal faults with various slickenline orientations were observed in all rock types. The migmatitic biotite gneiss and its structures resemble those of the NT. However, U-Pb zircon data yielded a detrital zircon signature typical for Avalonia, with predominantly Mesoproterozoic and minor Paleoproterozoic and Tonian populations. Furthermore, zircon overgrowths are ~585 Ma, which suggests that the high-grade metamorphism and partial melting were Ediacaran and did not result from the Acadian orogeny and channel flow at that time. Based on the (1) blocky/lensoid outcrop pattern of rock types, (2) varied orientations of structures, and (3) abundance of faults, the area may represent a brittle fault zone that cut off the interpreted channel flow zone of the Nashoba terrane. Our structural analysis is complemented by and provides context for high-resolution seismic imaging of the crust enabled by the ongoing GENESIS deployment of broadband seismometers across the NT. Preliminary results from GENESIS suggest a transition in crustal structure across the boundary between the NT and AT, consistent with geological observations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
