skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gene Editing in the Chagas Disease Vector Rhodnius prolixus by Cas9-Mediated ReMOT Control
Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.  more » « less
Award ID(s):
1645331
PAR ID:
10515227
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Mary Ann Liebert Inc.
Date Published:
Journal Name:
The CRISPR Journal
Volume:
7
Issue:
2
ISSN:
2573-1599
Page Range / eLocation ID:
88 to 99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The most devastating disease affecting the global citrus industry is Huanglongbing (HLB), caused by the pathogen Candidatus Liberibacter asiaticus. HLB is primarily spread by the insect vector Diaphorina citri (Asian Citrus Psyllid). To counteract the rapid spread of HLB by D. citri, traditional vector control strategies such as insecticide sprays, the release of natural predators, and mass introductions of natural parasitoids are used. However, these methods alone have not managed to contain the spread of disease. To further expand the available tools for D. citri control through generating specific modifications of the D. citri genome, we have developed protocols for CRISPR-Cas9-based genetic modification. Until now, genome editing in D. citri has been challenging due to the general fragility and size of D. citri eggs. Here we present optimized methods for collecting and preparing eggs to introduce the Cas9 ribonucleoprotein (RNP) into early embryos and alternative methods of injecting RNP into the hemocoel of adult females for ovarian transduction. Using these methods, we have generated visible somatic mutations, indicating their suitability for gene editing in D. citri. These methods represent the first steps toward advancing D. citri research in preparation for future genetic-based systems for controlling HLB. 
    more » « less
  2. Abstract CRISPR/Cas9 gene editing is a powerful technology to study the genetics of rising model organisms, such as the jewel waspNasonia vitripennis. However, current methods involving embryonic microinjection of CRISPR reagents are challenging. Delivery of Cas9 ribonucleoprotein into female ovaries is an alternative that has only been explored in a small handful of insects, such as mosquitoes, whiteflies and beetles. Here, we developed a simple protocol for germline gene editing by injecting Cas9 ribonucleoprotein in adultN. vitripennisfemales using either ReMOT control (Receptor‐Mediated Ovary Transduction of Cargo) or BAPC (Branched Amphiphilic Peptide Capsules) as ovary delivery methods. For ReMOT Control we used theDrosophila melanogaster‐derived peptide ‘P2C’ fused to EGFP to visualize the ovary delivery, and fused to Cas9 protein for gene editing of thecinnabargene using saponin as an endosomal escape reagent. For BAPC we optimized the concentrations of protein, sgRNA and the transfection reagent. We demonstrate delivery of protein cargo such as EGFP and Cas9 into developing oocytes via P2C peptide and BAPC. Additionally, somatic and germline gene editing were demonstrated. This approach will greatly facilitate CRISPR‐applied genetic manipulation in this and other rising model organisms. 
    more » « less
  3. Slotman, Michel (Ed.)
    Abstract The wide distribution of Culex (Cx.) pipiens complex mosquitoes makes it difficult to prevent the transmission of mosquito-borne diseases in humans. Gene editing using CRISPR/Cas9 is an effective technique with the potential to solve the growing problem of mosquito-borne diseases. This study uses the ReMOT Control technique in Culex pipiens pallens (L.) to produce genetically modified mosquitoes. A microinjection system was established by injecting 60 adult female mosquitoes—14 µl injection mixture was required, and no precipitation occurred with ≤1 µl of endosomal release reagents (chloroquine or saponin). The efficiency of delivery of the P2C-enhanced green fluorescent protein-Cas9 (P2C-EGFP-Cas9) ribonucleoprotein complex into the ovary was 100% when injected at 24 h post-bloodmeal (the peak of vitellogenesis). Using this method for KMO knockout, we found that gene editing in the ovary could also occur when P2C-Cas9 RNP complex was injected into the hemolymph of adult Cx. pipiens pallens by ReMOT Control. In the chloroquine group, of the 2,251 G0 progeny screened, 9 individuals showed with white and mosaic eye phenotypes. In the saponin group, of the 2,462 G0 progeny screened, 8 mutant individuals were observed. Sequencing results showed 13 bp deletions, further confirming the fact that gene editing occurred. In conclusion, the successful application of ReMOT Control in Cx. pipiens pallens not only provides the basic parameters (injection parameters and injection time) for this method but also facilitates the study of mosquito biology and control. 
    more » « less
  4. Abstract Key messageTransgene-free genome editing of the gene of interest in citrus and poplar has been achieved by co-editing theALSgene via transient transgene expression of an efficient cytosine base editor. AbstractCRISPR-Cas genome editing systems have been widely used in plants. However, such genome-edited plants are nearly always transgenic in the first generation whenAgrobacterium-mediated transformation is used. Transgene-free genome-edited plants are valuable for genetic analysis and breeding as well as simplifying regulatory approval. It can be challenging to generate transgene-free genome-edited plants in vegetatively propagated or perennial plants. To advance transgene-free genome editing in citrus and poplar, we investigated a co-editing strategy using an efficient cytosine base editor (CBE) to edit theALSgene to confer herbicide resistance combined with transient transgene expression and potential mobile RNA-based movement of CBE transcripts to neighboring, non-transgenic cells. An FCY-UPP based cytotoxin system was used to select non-transgenic plants that survive after culturing on 5-FC containing medium. While the editing efficiency is higher in poplar than in citrus, our results show that the CBE-based co-editing strategy works in both citrus and poplar, albeit with low efficiency for biallelic edits. Unexpectedly, the addition of the TLS mobile RNA sequence reduced genome editing efficiency in both transgenic and non-transgenic plants. Although a small fraction of escaping plants is detected in both positive and negative selection processes, our data demonstrate a promising approach for generating transgene-free base-edited plants. 
    more » « less
  5. null (Ed.)
    Abstract Direct tests of gene function have historically been performed in a limited number of model organisms. The CRISPR/Cas system is species-agnostic, offering the ability to manipulate genes in a range of models, enabling insights into evolution, development, and physiology. Astatotilapia burtoni , a cichlid fish from the rivers and shoreline around Lake Tanganyika, has been extensively studied in the laboratory to understand evolution and the neural control of behavior. Here we develop protocols for the creation of CRISPR-edited cichlids and create a broadly useful mutant line. By manipulating the Tyrosinase gene, which is necessary for eumelanin pigment production, we describe a fast and reliable approach to quantify and optimize gene editing efficiency. Tyrosinase mutants also remove a major obstruction to imaging, enabling visualization of subdermal structures and fluorophores in situ. These protocols will facilitate broad application of CRISPR/Cas9 to studies of cichlids as well as other non-traditional model aquatic species. 
    more » « less