skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Development and Expansion of in vivo Germline Editing Technologies in Arthropods: Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) and Beyond
Synopsis In the past 20 years, sequencing technologies have led to easy access to genomic data from nonmodel organisms in all biological realms. Insect genetic manipulation, however, continues to be a challenge due to various factors, including technical and cost-related issues. Traditional techniques such as microinjection of gene-editing vectors into early stage embryos have been used for arthropod transgenesis and the discovery of Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein (CRISPR–Cas) technologies allowed for targeted mutagenesis and the creation of knockouts or knock-ins in arthropods. Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) acts as an alternative to embryonic microinjections, which require expensive equipment and extensive hands-on training. ReMOT Control’s main advantage is its ease of use coupled with the ability to hypothetically target any vitellogenic species, as injections are administered to the egg-laying adult rather than embryos. After its initial application in the mosquito Aedes aegypti, ReMOT Control has successfully produced mutants not only for mosquitoes but for multiple arthropod species from diverse orders, such as ticks, mites, wasps, beetles, and true bugs, and is being extended to crustaceans, demonstrating the versatility of the technique. In this review, we discuss the current state of ReMOT Control from its proof-of-concept to the advances and challenges in the application across species after 5 years since its development, including novel extensions of the technique such as direct parental (DIPA)-CRISPR.  more » « less
Award ID(s):
1645331
PAR ID:
10515234
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Integrative And Comparative Biology
Volume:
63
Issue:
6
ISSN:
1540-7063
Page Range / eLocation ID:
1550 to 1563
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles ) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control ( Re ceptor- m ediated O vary T ransduction of C argo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles , ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species. 
    more » « less
  2. Slotman, Michel (Ed.)
    Abstract The wide distribution of Culex (Cx.) pipiens complex mosquitoes makes it difficult to prevent the transmission of mosquito-borne diseases in humans. Gene editing using CRISPR/Cas9 is an effective technique with the potential to solve the growing problem of mosquito-borne diseases. This study uses the ReMOT Control technique in Culex pipiens pallens (L.) to produce genetically modified mosquitoes. A microinjection system was established by injecting 60 adult female mosquitoes—14 µl injection mixture was required, and no precipitation occurred with ≤1 µl of endosomal release reagents (chloroquine or saponin). The efficiency of delivery of the P2C-enhanced green fluorescent protein-Cas9 (P2C-EGFP-Cas9) ribonucleoprotein complex into the ovary was 100% when injected at 24 h post-bloodmeal (the peak of vitellogenesis). Using this method for KMO knockout, we found that gene editing in the ovary could also occur when P2C-Cas9 RNP complex was injected into the hemolymph of adult Cx. pipiens pallens by ReMOT Control. In the chloroquine group, of the 2,251 G0 progeny screened, 9 individuals showed with white and mosaic eye phenotypes. In the saponin group, of the 2,462 G0 progeny screened, 8 mutant individuals were observed. Sequencing results showed 13 bp deletions, further confirming the fact that gene editing occurred. In conclusion, the successful application of ReMOT Control in Cx. pipiens pallens not only provides the basic parameters (injection parameters and injection time) for this method but also facilitates the study of mosquito biology and control. 
    more » « less
  3. Greenstein, D (Ed.)
    Abstract The entomopathogenic nematode Steinernema hermaphroditum was recently rediscovered and is being developed as a genetically tractable experimental system for the study of previously unexplored biology, including parasitism of its insect hosts and mutualism with its bacterial endosymbiont Xenorhabdus griffiniae. Through whole-genome re-sequencing and genetic mapping we have for the first time molecularly identified the gene responsible for a mutationally defined phenotypic locus in an entomopathogenic nematode. In the process we observed an unexpected mutational spectrum following ethyl methansulfonate mutagenesis in this species. We find that the ortholog of the essential Caenorhabditis elegans peroxidase gene skpo-2 controls body size and shape in S. hermaphroditum. We confirmed this identification by generating additional loss-of-function mutations in the gene using CRISPR-Cas9. We propose that the identification of skpo-2 will accelerate gene targeting in other Steinernema entomopathogenic nematodes used commercially in pest control, as skpo-2 is X-linked and males hemizygous for loss of its function can mate, making skpo-2 an easily recognized and maintained marker for use in co-CRISPR. 
    more » « less
  4. ABSTRACT Over the course of hundreds of millions of years, biomineralization has evolved independently many times across all kingdoms of life. Among animals, the phylum Mollusca displays a remarkable diversity in biomineral structures, particularly the molluscan shell, which varies greatly in shape, size, pigmentation, and patterning. Shell matrix proteins (SMPs) are key components of these shells, and are thought to drive the precipitation of calcium carbonate minerals and influence shell morphology. However, this structure‐function relationship has rarely been studied directly because tools for knocking out genes did not exist in molluscs until recently. In this study, we report the first successful use of CRISPR/Cas9 gene editing to target an SMP in gastropod molluscs. Using the emerging model gastropodCrepidula atrasolea, we generated knockouts of theSMP1gene. Successful gene editing was confirmed by Sanger and MiSeq sequencing, and loss ofSMP1expression was validated through high‐content imaging of crispant embryos. This study establishesC. atrasoleaas a valuable model for investigating the genetic basis of shell formation and provides a framework for applying CRISPR/Cas9 technology in other molluscan species. Our approach will enable future studies to thoroughly test the role of SMPs in shaping the diverse array of molluscan shell structures. 
    more » « less
  5. null (Ed.)
    ABSTRACT The ABC transporter ABCB1 plays an important role in the disposition of xenobiotics. Embryos of most species express high levels of this transporter in early development as a protective mechanism, but its native substrates are not known. Here, we used larvae of the sea urchin Strongylocentrotus purpuratus to characterize the early life expression and role of Sp-ABCB1a, a homolog of ABCB1. The results indicate that while Sp-ABCB1a is initially expressed ubiquitously, it becomes enriched in the developing gut. Using optimized CRISPR/Cas9 gene editing methods to achieve high editing efficiency in the F0 generation, we generated ABCB1a crispant embryos with significantly reduced transporter efflux activity. When infected with the opportunistic pathogen Vibrio diazotrophicus, Sp-ABCB1a crispant larvae demonstrated significantly stronger gut inflammation, immunocyte migration and cytokine Sp-IL-17 induction, as compared with infected control larvae. The results suggest an ancestral function of ABCB1 in host–microbial interactions, with implications for the survival of invertebrate larvae in the marine microbial environment. 
    more » « less