This paper presents a novel mission-oriented path planning algorithm for a team of Unmanned Aerial Vehicles (UAVs). In the proposed algorithm, each UAV takes autonomous decisions to find its flight path towards a designated mission area while avoiding collisions to stationary and mobile obstacles. The main distinction with similar algorithms is that the target destination for each UAV is not apriori fixed and the UAVs locate themselves such that they collectively cover a potentially time-varying mission area. One potential application for this algorithm is deploying a team of autonomous drones to collectively cover an evolving forest wildfire and provide virtual reality for firefighters. We formulated the algorithm based on Reinforcement Learning (RL) with a new method to accommodate continuous state space for adjacent locations. To consider a more realistic scenario, we assess the impact of localization errors on the performance of the proposed algorithm. Simulation results show that the success probability for this algorithm is about 80% when the observation error variance is as high as 100 (SNR:-6dB). 
                        more » 
                        « less   
                    
                            
                            BERRY: Bit Error Robustness for Energy-Efficient Reinforcement Learning-Based Autonomous Systems
                        
                    
    
            Autonomous systems, such as Unmanned Aerial Vehicles (UAVs), are expected to run complex reinforcement learning (RL) models to execute fully autonomous positionnavigation-time tasks within stringent onboard weight and power constraints. We observe that reducing onboard operating voltage can benefit the energy efficiency of both the computation and flight mission, however, it can also result in on-chip bit failures that are detrimental to mission safety and performance. To this end, we propose BERRY, a robust learning framework to improve bit error robustness and energy efficiency for RL-enabled autonomous systems. BERRY supports robust learning, both offline and on-board the UAV, and for the first time, demonstrates the practicality of robust low-voltage operation on UAVs that leads to high energy savings in both compute-level operation and systemlevel quality-of-flight. We perform extensive experiments on 72 autonomous navigation scenarios and demonstrate that BERRY generalizes well across environments, UAVs, autonomy policies, operating voltages and fault patterns, and consistently improves robustness, efficiency and mission performance, achieving up to 15.62% reduction in flight energy, 18.51% increase in the number of successful missions, and 3.43× processing energy reduction. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2103951
- PAR ID:
- 10515281
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- In 2023 60th ACM/IEEE Design Automation Conference (DAC(
- ISBN:
- 979-8-3503-2348-1
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Location:
- San Francisco, CA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The paper discusses a deep reinforcement learning (RL) control strategy for fully autonomous vision-based approach and landing of vertical take-off and landing (VTOL) capable unmanned aerial vehicles (UAVs) on ships in the presence of disturbances such as wind gusts. The automation closely follows the Navy helicopter ship landing procedure and therefore, it detects a horizon bar that is installed on most Navy ships as a visual aid for pilots by applying uniquely developed computer vision techniques. The vision system utilizes the detected corners of the horizon bar and its known dimensions to estimate the relative position and heading angle of the aircraft. A deep RL-based controller was coupled with the vision system to ensure a safe and robust approach and landing at the proximity of the ship where the airflow is highly turbulent. The vision and RL-based control system was implemented on a quadrotor UAV and flight tests were conducted where the UAV approached and landed on a sub-scale ship platform undergoing 6 degrees of freedom deck motions in the presence of wind gusts. Simulations and flight tests confirmed the superior disturbance rejection capability of the RL controller when subjected to sudden 5 m/s wind gusts in different directions. Specifically, it was observed during flight tests that the deep RL controller demonstrated a 50% reduction in lateral drift from the flight path and 3 times faster disturbance rejection in comparison to a nonlinear proportional-integral-derivative controller.more » « less
- 
            Online reinforcement learning (RL) based systems are being increasingly deployed in a variety of safety-critical applications ranging from drone control to medical robotics. These systems typically use RL onboard rather than relying on remote operation from high-performance datacenters. Due to the dynamic nature of the environments they work in, onboard RL hardware is vulnerable to soft errors from radiation, thermal effects and electrical noise that corrupt the results of computations. Existing approaches to on-line error resilience in machine learning systems have relied on availability of the large training datasets to configure resilience parameters, which is not necessarily feasible for online RL systems. Similarly, other approaches involving specialized hardware or modifications to training algorithms are difficult to implement for onboard RL applications. In contrast, we present a novel error resilience approach for online RL that makes use of running statistics collected across the (real-time) RL training process to configure error detection thresholds without the need to access a reference training dataset. In this methodology, statistical concentration bounds leveraging running statistics are used to diagnose neuron outputs as erroneous. These erroneous neurons are then set to zero (suppressed). Our approach is compared against the state of the art and validated on several RL algorithms involving the use of multiple concentration bounds on CPU as well as GPU hardware.more » « less
- 
            null (Ed.)The use of semi-autonomous Unmanned Aerial Vehicles (UAVs or drones) to support emergency response scenarios, such as fire surveillance and search-and-rescue, has the potential for huge societal benefits. Onboard sensors and artificial intelligence (AI) allow these UAVs to operate autonomously in the environment. However, human intelligence and domain expertise are crucial in planning and guiding UAVs to accomplish the mission. Therefore, humans and multiple UAVs need to collaborate as a team to conduct a time-critical mission successfully. We propose a meta-model to describe interactions among the human operators and the autonomous swarm of UAVs. The meta-model also provides a language to describe the roles of UAVs and humans and the autonomous decisions. We complement the meta-model with a template of requirements elicitation questions to derive models for specific missions. We also identify common scenarios where humans should collaborate with UAVs to augment the autonomy of the UAVs. We introduce the meta-model and the requirements elicitation process with examples drawn from a search-and-rescue mission in which multiple UAVs collaborate with humans to respond to the emergency. We then apply it to a second scenario in which UAVs support first responders in fighting a structural fire. Our results show that the meta-model and the template of questions support the modeling of the human-on-the-loop human interactions for these complex missions, suggesting that it is a useful tool for modeling the human-on-the-loop interactions for multi-UAVs missions.more » « less
- 
            Emerging embedded systems, such as autonomous robots/vehicles, demand a new system-on-a-chip (SoC) that is ultra-low power (mW or even sub-mW level) but highly robust. Such an SoC typically integrates heterogeneous building blocks for supporting a range of features, each ideally operating in an independent voltage and frequency (V/F) domain [1]. In such an architecture, a network-on-chip (NoC) has played a key role to enable high-speed and energy-efficient networking. However, it is increasingly challenging to meet a robustness target since each V/F domain uses a significantly different voltage, e.g., from nominal 1V to near-threshold voltage (NTV), and clock frequency, e.g., from hundreds of MHz to sub-MHz. Furthermore, any two clocks may have uncertain and time-varying phase and frequency relationships. These properties significantly worsen robustness, particularly metastability, in an NoC.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
