The SUPERCHARGE project (STEM-based University Pathway Encouraging Relationships with Chicago-area High schools in Automation, Robotics, and Green Energy) is an after-school STEM program at four high schools in the Chicago Public Schools (CPS) district. The project is aimed at addressing the underrepresentation of Black, Latinx, and low-income students in STEM fields. Through hands-on activities, workshops, teacher professional development, and campus visits, the program aims to foster students' STEM identities and awareness of postsecondary pathways, particularly in the areas of renewable energy, robotics, and technology. The program has recently completed its first year of implementation in the high schools. The purpose of this article is to report on the first year of implementation, including challenges and lessons learned. Initial assessments indicate positive student engagement and satisfaction. Lessons learned from the first year include the importance of early program initiation, community relevance, and immersive hands-on activities. Future iterations will aim to further enhance student engagement and broaden participation in STEM fields, contributing to greater diversity and inclusion in the STEM workforce.
more »
« less
This content will become publicly available on June 15, 2025
Implementation of an Equitable and Inclusive After-school STEM Program
The SUPERCHARGE project (STEM-based University Pathway Encouraging Relationships with Chicago-area High schools in Automation, Robotics, and Green Energy) is an after-school STEM program at four high schools in the Chicago Public Schools (CPS) district. The project is aimed at addressing the underrepresentation of Black, Latinx, and low-income students in STEM fields. Through hands-on activities, workshops, teacher professional development, and campus visits, the program aims to foster students' STEM identities and awareness of postsecondary pathways, particularly in the areas of renewable energy, robotics, and technology. The program has recently completed its first year of implementation in the high schools. The purpose of this article is to report on the first year of implementation, including challenges and lessons learned. Initial assessments indicate positive student engagement and satisfaction. Lessons learned from the first year include the importance of early program initiation, community relevance, and immersive hands-on activities. Future iterations will aim to further enhance student engagement and broaden participation in STEM fields, contributing to greater diversity and inclusion in the STEM workforce.
more »
« less
- Award ID(s):
- 2148429
- NSF-PAR ID:
- 10515441
- Publisher / Repository:
- American Society for Engineering Education (ASEE)
- Date Published:
- Journal Name:
- Proceedings of the American Society for Engineering Education (ASEE) 2024 Annual Conference
- Format(s):
- Medium: X
- Location:
- Portland, Oregon
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics and Green Energy (SUPERCHARGE) is an NSF-sponsored project where university faculty and undergraduates from Illinois State University have designed informal, after-school engineering-related activities focusing on robotics, green energy, and automation. An emphasis is placed on activities and partnerships that promote knowledge, engagement, and interest in STEM fields in underserved schools and communities. This resource exchange presents activities from the final unit of the program's first year. In this project, high school students will build and experiment with a smart wireless weather station and indoor climate console with the goal of collecting and analyzing data to learn about the climate in their community while fostering STEM skills and interest in college and career pathways.more » « less
-
STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics and Green Energy (SUPERCHARGE) is an NSF-sponsored project where university faculty and undergraduates from Illinois State University have designed informal, after-school engineering-related activities focusing on robotics, green energy, and automation. An emphasis is placed on activities and partnerships that promote knowledge, engagement, and interest in STEM fields in underserved schools and communities. This resource exchange presents activities from the final unit of the program's first year. In this project, high school students will build and experiment with a smart wireless weather station and indoor climate console with the goal of collecting and analyzing data to learn about the climate in their community while fostering STEM skills and interest in college and career pathways.more » « less
-
The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor with New York City Public Schools (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University. The NSF project, Innovative Technology Experiences for Students and Teachers (ITEST), had generated a large amount of data through engagement with teachers and students throughout New York City public schools. This article presents the second part to a large data collection study with focus on Underrepresented Minority (URM) student interest in STEM and engagement with teachers to support them in teaching science through experiential learning and lessons that connect science to the real world, particularly through science in the New York Harbor. The first component of the study focused on URM student interest in STEM. This second component of the study focuses on teacher engagement in the program, and what the researchers had learned in the process. Overall, teachers reported very favorable options on the impact of the BOP-CCERS activities as ways to generate student interest in STEM majors and careers. Teacher participants were generally positive about the amount of support and resources they received as members of the project, as well as the oyster-related knowledge and practices they learned to use with their own students in oyster field research. Data from the study provided evidence that the teacher activities were successful and met the project’s goals to provide support and resources for teachers to engage students in oyster restoration research.more » « less
-
SUPERCHARGE (STEM-based University Pathway Encouraging Relationships with Chicago High schools in Automation, Robotics, and Green Energy) is an NSF-funded after-school STEM program through which an interdisciplinary team of faculty, staff, and students at Illinois State University is collaborating with teachers from four high schools in Chicago, Illinois in the U.S. and four non-profit Community-Based Organizations (CBOs) in the surrounding communities to develop innovative hands-on activities for underrepresented students. These informal educational activities are centered on topics such as robotics, automation, and renewable energy. In the program's inaugural year, one of the four units will focus on assessing air quality, employing the micro:bit microcontroller for programming and the Kitronik Air Quality Board for sensing and data collection. All the air quality unit activities were developed by undergraduate students under the guidance of faculty advisors. High school teachers mentoring the student learners in the afterschool STEM program iteratively reviewed all activities when these activities were developed. These air quality assessment activities are outlined as follows. Activity 1: Students are introduced to the significance of indoor and outdoor air quality. They subsequently learn about air quality components, including temperature, pressure, humidity, air quality index, and CO2 equivalent. Activities 2 & 3: Students collect air quality data from different locations and visualize the collected data to comprehend variations among these locations. An extension activity is available for students interested in collecting air quality data over an extended period, allowing them to evaluate the correlation between indoor conditions and air quality changes. Activity 4: Students learn to program the micro:bit to display air quality status using LED lights on the air quality board. Activity 5: The learning unit concludes by presenting air quality conditions in their neighborhood in collaboration with their CBOs. Students can assess the air quality using the hand-held device they programmed and compare their findings to data collected by existing air quality monitoring sensors in their communities. Preliminary data collected during the testing phase indicate that the developed programs effectively display air quality. These activities were designed to help student learners comprehend coding, microcontroller technology, and data collection and visualization. In the summer of 2023, the SUPERCHARGE team organized two one-day professional development workshops. Teachers who participated in these summer workshops completed a selection of air quality assessment activities. They provided feedback, confirming that the programs on the air quality board work seamlessly. Minor suggestions were received, and the instructions were modified accordingly. This Work in Progress paper aims to document one of the first year’s learning activities of the highly collaborative after-school STEM program, demonstrate the activity development processes, and foster an exchange of ideas and feedback among educators in related fields.more » « less