skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enantioselective Paternò–Büchi Reactions: Strategic Application of a Triplet Rebound Mechanism for Asymmetric Photocatalysis
The Paternò–Büchi reaction is the [2+2] photocycloaddition of a carbonyl with an alkene to afford oxetane products. Enantioselective catalysis of this classical photoreaction, however, has proven to be a long-standing challenge. Many of the best-developed strategies for asymmetric photochemistry are not suitable to address this problem because the interaction of carbonyls with Brønsted or Lewis acidic catalysts can alter the electronic structure of their excited state and divert their reactivity towards alternate photoproducts. We show herein that an alternative triplet rebound strategy enables the stereocontrolled reaction of an excited-state carbonyl compound in its native, unbound state. These studies have resulted in the development of the first highly enantioselective catalytic Paternò–Büchi reaction, cata-lyzed by a novel hydrogen-bonding chiral Ir photocatalyst.  more » « less
Award ID(s):
2349003
PAR ID:
10515482
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
22
ISSN:
0002-7863
Page Range / eLocation ID:
15293 to 15300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This review highlights the excited state characteristics of imines and processes that govern their photochemical and photophysical properties. This review examines the pathways for deactivation and types of photochemical reactions that originate from excited imines. This review also features recent strategies that are developed to circumvent the fundamental issues that have plagued the development of the aza Paternò–Büchi reaction. 
    more » « less
  2. The aza Paternò–Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò–Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light–mediated aza Paternò–Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis ofepi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity. 
    more » « less
  3. Abstract Control over the stereochemistry of excited-state photoreactions remains a significant challenge in organic synthesis. Recently, it has become recognized that the photophysical properties of simple organic substrates can be altered upon coordination to Lewis acid catalysts, and that these changes can be exploited in the design of highly enantioselective catalytic photoreactions. Chromophore activation strategies, wherein simple organic substrates are activated towards photoexcitation upon binding to a Lewis acid catalyst, rank among the most successful asymmetric photoreactions. Herein, we show that chiral Brønsted acids can also catalyze asymmetric excited-state photoreactions by chromophore activation. This principle is demonstrated in the context of a highly enantio- and diastereoselective [2+2] photocycloaddition catalyzed by a chiral phosphoramide organocatalyst. Notably, the cyclobutane products arising from this method feature atrans-cisstereochemistry that is complementary to other enantioselective catalytic [2+2] photocycloadditions reported to date. 
    more » « less
  4. When volatile alkenes are emitted into the atmosphere, they are rapidly removed by oxidizing agents such as hydroxyl radicals and ozone. The latter reaction is termed ozonolysis and is an important source of Criegee intermediates (CIs), i.e., carbonyl oxides, that are implicated in enhancing the oxidizing capacity of the troposphere. These CIs aid in the formation of lower volatility compounds that typically condense to form secondary organic aerosols. CIs have attracted vast attention over the past two decades. Despite this, the effect of their substitution on the ground and excited state chemistries of CIs is not well studied. Here, we extend our knowledge obtained from prior studies on CIs by CF3 substitution. The resulting CF3CHOO molecule is a CI that can be formed from the ozonolysis of hydrofluoroolefins (HFOs). Our results show that the ground state unimolecular decay should be less reactive and thus more persistent in the atmosphere than the non-fluorinated analog. The excited state dynamics, however, are predicted to occur on an ultrafast timescale. The results are discussed in the context of the ways in which our study could advance synthetic chemistry, as well as processes relevant to the atmosphere. 
    more » « less
  5. null (Ed.)
    Axially chiral enamides bearing a N–C axis have been recently studied and were proposed to be valuable chiral building blocks, but a stereoselective synthesis has not been achieved. Here, we report the first enantioselective synthesis of axially chiral enamides via a highly efficient, catalytic approach. In this approach, C(sp 2 )–N bond formation is achieved through an iridium-catalyzed asymmetric allylation, and then in situ isomerization of the initial products through an organic base promoted 1,3-H transfer, leading to the enamide products with excellent central-to-axial transfer of chirality. Computational and experimental studies revealed that the 1,3-H transfer occurs via a stepwise deprotonation/re-protonation pathway with a chiral ion-pair intermediate. Hydrogen bonding interactions with the enamide carbonyl play a significant role in promoting both the reactivity and stereospecificity of the stepwise 1,3-H transfer. The mild and operationally simple formal N -vinylation reaction delivered a series of configurationally stable axially chiral enamides with good to excellent yields and enantioselectivities. 
    more » « less