The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a Saturday Program. The program has provided inner-city high school students with out-of-school, hands-on educational experiences focusing on both professional and technical skills. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines. The program is held on community college campuses as a way to show students that they are welcome in a college environment, which has inspired participants to have confidence in their own abilities to attend college and pursue educational and career goals in technology fields. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The virtual four-day Summer Teachers’ Workshop allows high school and community college educators from throughout the United States to experience the same program that is used for the high school students. Although the workshop is virtual, participants are provided with materials and supplies, so they have the same hands-on experiences as the students in the Saturday program.
more »
« less
Building Interest in Technology Careers through a Five-Week Saturday Program
The goal of this program, funded by the National Science Foundation Advanced Technological Education (NSF ATE) program, is to provide additional professional and technical skills to cohorts of high school students through a five-week Saturday Program. The curriculum is continuously reviewed and modified to address current skills needed by the technician workforce. While this program was originally proposed and planned as in-person, the leadership team decided to shift to a virtual environment as the pandemic caused the closure of community college campuses where the program was to be held. Program modalities and curriculum were modified to shift to an online experience. In Fall 2022, the program was able to return to an in-person format. The program’s leadership team disseminates best practices through presentations, social media, publications, and workshops at national conferences. The four-day Summer Teachers’ Workshop brings high school and community college educators from throughout the United States to experience the same program that is used for the high school students. The Program’s outreach efforts and the national dissemination of best practices for engaging underrepresented populations in technology careers has a national impact that will potentially increase the diversity of the technician workforce. The program has inspired participants to have confidence in their own abilities. Principals from participating high schools have commented that students who attended the Program have demonstrated an improvement in their academics and behavior due to the knowledge of professional and technical skills that they have gleaned from the program. The program has provided inner-city students from four high schools with out-of-school, hands-on educational programs focusing on professional skills, technical writing and engineering technology competencies. Participant demographics will be discussed in this paper as diversity is a key objective of the program. The program utilizes industry-driven, project-based learning (PBL) and lessons in career and college readiness to prepare students for the workforce. Each student session consists of five consecutive Saturdays and is taught by a team of high school teachers, community college faculty, and instructors with expertise in professional skills, teambuilding, leadership, technical writing, coding, and STEM disciplines.
more »
« less
- PAR ID:
- 10515540
- Publisher / Repository:
- ASEE Conferences
- Date Published:
- Journal Name:
- ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Location:
- Baltimore , Maryland
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This project, supported by NSF ATE (award#2202107), aims to serve the national interest by addressing the shortage of technicians possessing the skills to maintain programmable logic controllers (PLCs) and robots in the service industries. Vaughn College program offers a PLC and Robotic Automation (PRA) Technician Certificate, consisting of 13 credits. It prepares technicians for roles in diverse service industries such as wholesale and retail, pharmaceuticals, food, and beverage, as well as airport baggage and cargo handling [1][2][3]. Additionally, all credits earned through the certificate program are transferable to the college's Mechatronic Engineering program. The college, designated as a Hispanic-Serving Institution, places a strong emphasis on recruiting students from low-income families and underrepresented racial and ethnic groups. The certificate program alleviates the financial burden and time commitment required for students to pursue education, providing them with the means to pursue advanced degrees or offer support to family members seeking greater opportunities. The project’s objective is to establish a one-year certificate program to provide PRA technicians with the essential skills for service industries. To ensure program graduates possess the desired qualifications, the project (a) collaborates with its Business and Industry Leadership Team (BILT) to identify industry needs and develop a curriculum to address them; (b) supports faculty in obtaining training and industry certifications; (c) recruits both high-school graduates, incumbent workers, and college students through newly developed informational materials. Additionally, to enhance diversity within the PRA Technician workforce, the program will collaborate with the college’s existing initiatives to attract more female and racial and ethnic minorities. Advancements in the comprehension of technical education for service industries are disseminated through the college website and presented at regional and national conferences [4].more » « less
-
"Industry 4.0-based systems and subsystems are replacing current process and process control equipment in Florida’s manufacturing environment. The Florida State College System Engineering Technology (ET) degree pathway for developing engineering technology professionals is responding to this reality at the ET two-year associate degree, the 4-year ET B.S. degree, and post-graduate degrees as well as a statewide recognized path to the Professional Engineers license in Engineering Technology. The National Science Foundation Advanced Technological Education program (NSF-ATE) supports this effort. NSF-ATE assets provided to FLATE and five partner colleges are directed to the formation of a statewide advisory board for the 20 colleges that offer ET degrees as well as supporting six overarching Florida ET education system target goals: (1) Adjust Florida Department of Education Standards and Benchmarks to include criteria that address Florida manufacturer-identified Industry 4.0 skills gap in its technical workforce. (2) Create a statewide streamlined seamless articulation environment from the Engineering Technology A.S. to B.S. degree programs. (3) Provide Professional Development that up-skills Engineering Technology Degree faculty as related to identified Industry 4.0 technician skill needs. (4) Create a short-term ET College Credit Certificate to prepare current and future technicians to apply these new skills in the manufacturing workspace. (5) Amplify the manufacturer's involvement with college engineering technology certificates and A.S.ET degree programs. (6) Create Post-A.S. Curriculum Advanced Technology Certificate (ATC) to facilitate skilled technician professional advancement. Statewide implementation of the curriculum changes is key to more robust programs and more work-ready technician graduates. This paper and presentation poster will share the strategies the project team is using to achieve its goals and objectives. It will also share the feedback received from the industry relative to industry 4.0 skills needed in their facilities."more » « less
-
Expanding access to and engaging diverse groups of students in high school computer science (CS) classes depends on qualified CS teachers. In this paper, we describe how faculty at our liberal arts college built CS teacher capacity at over 20 school districts through comprehensive college/high school partnerships. The majority of these districts serve rural or high-needs students, groups underrepresented in CS classrooms. The program works primarily with in-service teachers from other disciplines, helping them develop the expertise to teach CS. It is comprehensive in that it includes curricula and professional development for a high school level CS course and a dual-enrollment college level CS course, pathways to CS certification, community events, and opportunities for teacher leadership and collaboration. These modes of engagement are structured so that novice and veteran teachers and college faculty have opportunities to interact in different capacities over several years to create a robust professional learning community. Initial survey results show increasing levels of teacher confidence and sense of belonging, and increasing student confidence in their CS abilities.more » « less
-
This paper presents the work of a two-year community college building a comprehensive collaborative infrastructure with a research university, seven high schools, and five industry partners in North Louisiana. The five main goals in this collaborative infrastructure were establishing (1) a management structure, (2) one primary high school partner, (3) two academic transfer agreements, (4) an Industrial Advisory Board of three members, and (5) seven additional high school partners to scale future implementation. Three of these goals were fully accomplished within the planned timeline, and the two others were partially accomplished. This paper discusses detailed achievements in each area along with the project’s external evaluation results and the project leadership team’s lessons learned. The partnership infrastructure that has been built will be used to build the skilled technical workforce in North Louisiana through increasing high school students’ awareness of and preparation for careers in instrumentation and manufacturing. This material is based upon work supported by the National Science Foundation's Advanced Technological Education Program under Grant #1801177. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.more » « less
An official website of the United States government

