Transition metal trichalcogenides (TMTs) are two-dimensional (2D) systems with quasi-one-dimensional (quasi-1D) chains. These 2D materials are less susceptible to undesirable edge defects, which enhances their promise for low-dimensional optical and electronic device applications. However, so far, the performance of 2D devices based on TMTs has been hampered by contact-related issues. Therefore, in this review, a diligent effort has been made to both elucidate and summarize the interfacial interactions between gold and various TMTs, namely, In4Se3, TiS3, ZrS3, HfS3, and HfSe3. X-ray photoemission spectroscopy data, supported by the results of electrical transport measurements, provide insights into the nature of interactions at the Au/In4Se3, Au/TiS3, Au/ZrS3, Au/HfS3, and Au/HfSe3interfaces. This may help identify and pave a path toward resolving the contemporary contact-related problems that have plagued the performance of TMT-based nanodevices.
This content will become publicly available on May 24, 2025
Synthesis and characterization of low-dimensional N-heterocyclic carbene lattices
The covalent interaction of N-heterocyclic carbenes (NHCs) with transition metal atoms gives rise to distinctive frontier molecular orbitals (FMOs). These emergent electronic states have spurred the widespread adoption of NHC ligands in chemical catalysis and functional materials. Although formation of carbene-metal complexes in self-assembled monolayers on surfaces has been explored, design and electronic structure characterization of extended low-dimensional NHC-metal lattices remains elusive. Here we demonstrate a modular approach to engineering one-dimensional (1D) metal-organic chains and two-dimensional (2D) Kagome lattices using the FMOs of NHC–Au–NHC junctions to create low-dimensional molecular networks exhibiting intrinsic metallicity. Scanning tunneling spectroscopy and first-principles density functional theory reveal the contribution of C–Au–C π-bonding states to dispersive bands that imbue 1D- and 2D-NHC lattices with exceptionally small work functions.
more »
« less
- Award ID(s):
- 2203911
- PAR ID:
- 10515586
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science
- Volume:
- 384
- Issue:
- 6698
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 895 to 901
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Graphical abstract I –V characteristics of (a) TiS3, (b) ZrS3, and (c) HfS3 -
The organic metal halide hybrids welcome a new member with a one-dimensional (1D) tubular structure. Herein we report the synthesis and characterization of a single crystalline bulk assembly of organic metal halide nanotubes, (C 6 H 13 N 4 ) 3 Pb 2 Br 7 . In a metal halide nanotube, six face-sharing metal halide dimers (Pb 2 Br 9 5− ) connect at the corners to form rings that extend in one dimension, of which the inside and outside surfaces are coated with protonated hexamethylenetetramine (HMTA) cations (C 6 H 13 N 4 + ). This unique 1D tubular structure possesses highly localized electronic states with strong quantum confinement, resulting in the formation of self-trapped excitons that give strongly Stokes shifted broadband yellowish-white emission with a photoluminescence quantum efficiency (PLQE) of ∼7%. Having realized single crystalline bulk assemblies of two-dimensional (2D) wells, 1D wires, and now 1D tubes using organic metal halide hybrids, our work significantly advances the research on bulk assemblies of quantum-confined materials.more » « less
-
Abstract This work was inspired by new experimental findings where we discovered a two-dimensional (2D) material comprised of titanium-oxide-based one-dimensional (1D) sub-nanometer filaments. Preliminary results suggest that the 2D material contains considerable amounts of carbon, C, in addition to titanium, Ti, and oxygen, O. The aim of this study is to investigate the low-energy, stable atomic forms of 2D titanium carbo-oxides as a function of C content. Via a combination of first-principles calculations and an effective structure sampling scheme, the stable configurations of C-substitutions are comprehensively searched by templating different 2D TiO 2 polymorphs and considering a two O to one C replacement scheme. Among the searched stable configurations, a structure where the (101) planes of anatase bound the top and bottom surfaces with a chemical formula of Ti C 1 / 4 O 3 / 2 was of particularly low energy. Furthermore, the variations in the electronic band structure and chemical bonding environments caused by the high-content C substitution are investigated via additional calculations using a hybrid exchange-correlation functional.more » « less
-
Organic metal halide hybrids with low-dimensional structures at the molecular level have received great attention recently for their exceptional structural tunability and unique photophysical properties. Here we report for the first time the synthesis and characterization of a one-dimensional (1D) organic metal halide hybrid, which contains metal halide nanoribbons with a width of three octahedral units. It is found that this material with a chemical formula C 8 H 28 N 5 Pb 3 Cl 11 shows a dual emission with a photoluminescence quantum efficiency (PLQE) of around 25%. Photophysical studies and density functional theory (DFT) calculations suggest the coexisting of delocalized free excitons and localized self-trapped excitons in metal halide nanoribbons leading to the dual emission.more » « less
-
The moiré potential in rotationally misfit two-dimensional (2D) heterostructures has been used to build artificial exciton and electron lattices, which have become platforms for realizing exotic electronic phases. Here, we demonstrate a different approach to create a superlattice potential in 2D crystals by using the near field of an array of polar molecules. A bilayer of titanyl phthalocyanine (TiOPc), consisting of alternating out-of-plane dipoles, is deposited on monolayer MoS2. Time-resolved two-photon photoemission spectroscopy reveals a pair of interlayer exciton states with an energy difference of ∼0.1 eV, which is consistent with the electrostatic potential modulation induced by the TiOPc bilayer as determined by density functional theory calculations. Because the symmetry and the period of this potential superlattice can be changed readily by using molecules of different shapes and sizes, molecule/2D heterostructures can be promising platforms for designing artificial exciton and electron lattices.more » « less