Title: Towards a Geospatial Household Natural Hazard Resilience Model in Rwanda
Household resilience to natural hazards is a critical issue facing society with the advent of climate change. In this work, we developed one of the first household natural hazard resilience geospatial models for Rwanda designed to understand household resilience at detailed spatial resolutions. We evaluated indicators within the model through empirical fieldwork using an easy-to-deploy survey on Android tablets. To the best of our knowledge, the work presented here is innovative as it is some of the first to use geospatial technology-based surveys to conduct household-level natural disaster resilience surveys in Rwanda. Select results presented in this paper indicated that household vulnerabilities and subsequent resilience generally matched existing district-level risk mapping of Rwanda. However, our work went beyond existing risk mapping to understand individual household perceptions of resilience. Respondents generally reported a mix of positive and negative drivers of household resilience. Security vis-à-vis natural disasters and economic situation was perceived as very insecure, healthcare and education were very secure, and utilities, food and water, and housing were generally perceived as insecure but not as insecure as economic situation and security to future disasters. There is much more that can be understood in terms of household resilience as it relates to many factors of household resiliency in our model including physical vulnerabilities, financial capacity, information access, technological capacity, and most importantly, resilience perceptions. more »« less
Abstract Non-migration is an adaptive strategy that has received little attention in environmental migration studies. We explore the leveraging factors of non-migration decisions of communities at risk in coastal Bangladesh, where exposure to both rapid- and slow-onset natural disasters is high. We apply the Protection Motivation Theory (PMT) to empirical data and assess how threat perception and coping appraisal influences migration decisions in farming communities suffering from salinization of cropland. This study consists of data collected through quantitative household surveys ( n = 200) and semi-structured interviews from four villages in southwest coastal Bangladesh. Results indicate that most respondents are unwilling to migrate, despite better economic conditions and reduced environmental risk in other locations. Land ownership, social connectedness, and household economic strength are the strongest predictors of non-migration decisions. This study is the first to use the PMT to understand migration-related behaviour and the findings are relevant for policy planning in vulnerable regions where exposure to climate-related risks is high but populations are choosing to remain in place.
Uwe, Busbach-Richard; Gerber, Brian J.
(, Economics and Culture)
Abstract Research purpose. Smart City technologies offer great promise for a higher quality of life, including improved public services, in an era of rapid and intense global urbanization. The use of intelligent or smart information and communication technologies to produce more efficient systems of services in those urban areas, captured under the broad rubric of “smart cities,” also create new vectors of risk and vulnerability. The aim of this article is to raise consideration of an integrated cross-domain approach for risk reduction based on the risks smart cities are exposed to, on the one hand, from natural disasters and, on the other, from cyber-attacks. Design / Methodology / Approach. This contribution describes and explains the risk profile for which smart cities are exposed to both natural disasters and cyber-attacks. The vulnerability of smart city technologies to natural hazards and cyber-attacks will first be summarized briefly from each domain, outlining those respective domain characteristics. Subsequently, methods and approaches for risk reduction in the areas of natural hazards and ICT security will be examined in order to create the basis for an integrated cross-domain approach to risk reduction. Differences are also clearly identified if an adaptation of a risk reduction pattern appears unsuitable. Finally, the results are summarized into an initial, preliminary integrated cross-domain approach to risk reduction. Findings. Risk management in the two domains of ICT security and natural hazards is basically similar. Both domains use a multilayer approach in risk reduction, both have reasonably well-defined regimes and established risk management protocols. At the same time, both domains share a policymaking and policy implementation challenge of the difficulty of appropriately forecasting future risk and making corresponding resource commitments to address future risk. Despite similarities, different concepts like the CIA Triad, community resilience, absorption capacity and so on exist too. Future research of these concepts could lead to improve risk management. Originality / Value / Practical implications. Cyber-attacks on the ICT infrastructure of smart cities are a major vulnerability – but relatively little systematic evaluation exists on the topic. Likewise, ICT infrastructure is vulnerable to natural disasters too – and the risk of more severe natural disasters in the context of a global trend toward massive cities is increasing dramatically. Explicit consideration of the issues associated with cross-domain integration of reduction of interdependent risk is a necessary step in ensuring smart city technologies also serve to promote longer-term community sustainability and resilience.
Campello Torres, Pedro Henrique; Gonçalves, Demerval Aparecido; Mendes de Almeida Collaço, Flávia; Lopes dos Santos, Kauê; Canil, Katia; Cabral de Sousa Júnior, Wilson; Jacobi, Pedro Roberto
(, Sustainability)
The São Paulo Macro Metropolis (SPMM) is one of the richest and most inequitable regions of the Global South and is already experiencing the impacts of severe climate events. This study analyzes climate risk assessments and policy responses for this territory as well as its vulnerabilities. The Index of Vulnerability to Natural Disasters related to Droughts in the Context of Climate Change (IVDNS—acronym in Portuguese) was used to identify and select the most vulnerable municipalities in the SPMM. Following vulnerability analysis, the municipalities were subjected to risk analysis in the context of existing Brazilian legislation. The results indicate that, despite having positive capacities to respond to climate change, the analyzed municipalities are far from advancing from the status quo or taking the actions that are necessary to face future challenges in a climate emergency scenario. The results indicate that, despite being the most vulnerable to droughts and natural disasters, the cities analyzed are not the most vulnerable in the São Paulo Macro Metropolis from a socio-economic point of view. On the contrary, these are regions that could have a strong institutional capacity to respond to present and future challenges.
More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of openground- story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction.
The social impacts of natural resource management are challenging to evaluate because their perceived benefits and costs vary across stakeholder groups. Nevertheless, ensuring social acceptance is essential to building public support for adaptive measures required for the sustainable management of ecosystems in a warming climate. Based on surveys with both members of the public and natural-resource professionals in California, we applied structural-equation modeling to examine how psychological factors impact individuals' attitudes toward management's capacity to reduce the impacts of disturbance events, including wildfires, smoke from wildfires, drought, water shortages, tree mortality, and utility failure. We found the members of the public more optimistic than natural-resource professionals, perceiving management capacity to be on average 3.04 points higher (of 10) and displaying higher levels of trust of the government on both the state (Δ = 11%) and federal levels (Δ = 19%). Personal experience with natural-resource events had a positive effect on perceived management in both the public (1.26) and the professional samples (5.05), whereas perceived future risk had a negative effect within both samples (professional = −0.91, public = −0.45). In addition, higher trust and perceived management effectiveness were also linked with higher perceptions of management capacity in the public sample (1.81 versus 1.24), which could affect the acceptance of management actions. Continued social acceptance in a period of increasing risk may depend on managers sharing personal experiences and risk perception when communicating with the public. The contemporary shift toward multibenefit aims is an important part of that message.
Tomaszewski, Brian, Scott, Timothy, Schneider, Jennifer, Walker, Rebekah, Rwanyiziri, Gaspard, Christian_Kwizera, Jean Francois, and Vodacek, Anthony. Towards a Geospatial Household Natural Hazard Resilience Model in Rwanda. Retrieved from https://par.nsf.gov/biblio/10515706. Web. doi:10.1109/GHTC56179.2023.10354787.
Tomaszewski, Brian, Scott, Timothy, Schneider, Jennifer, Walker, Rebekah, Rwanyiziri, Gaspard, Christian_Kwizera, Jean Francois, & Vodacek, Anthony. Towards a Geospatial Household Natural Hazard Resilience Model in Rwanda. Retrieved from https://par.nsf.gov/biblio/10515706. https://doi.org/10.1109/GHTC56179.2023.10354787
Tomaszewski, Brian, Scott, Timothy, Schneider, Jennifer, Walker, Rebekah, Rwanyiziri, Gaspard, Christian_Kwizera, Jean Francois, and Vodacek, Anthony.
"Towards a Geospatial Household Natural Hazard Resilience Model in Rwanda". Country unknown/Code not available: IEEE. https://doi.org/10.1109/GHTC56179.2023.10354787.https://par.nsf.gov/biblio/10515706.
@article{osti_10515706,
place = {Country unknown/Code not available},
title = {Towards a Geospatial Household Natural Hazard Resilience Model in Rwanda},
url = {https://par.nsf.gov/biblio/10515706},
DOI = {10.1109/GHTC56179.2023.10354787},
abstractNote = {Household resilience to natural hazards is a critical issue facing society with the advent of climate change. In this work, we developed one of the first household natural hazard resilience geospatial models for Rwanda designed to understand household resilience at detailed spatial resolutions. We evaluated indicators within the model through empirical fieldwork using an easy-to-deploy survey on Android tablets. To the best of our knowledge, the work presented here is innovative as it is some of the first to use geospatial technology-based surveys to conduct household-level natural disaster resilience surveys in Rwanda. Select results presented in this paper indicated that household vulnerabilities and subsequent resilience generally matched existing district-level risk mapping of Rwanda. However, our work went beyond existing risk mapping to understand individual household perceptions of resilience. Respondents generally reported a mix of positive and negative drivers of household resilience. Security vis-à-vis natural disasters and economic situation was perceived as very insecure, healthcare and education were very secure, and utilities, food and water, and housing were generally perceived as insecure but not as insecure as economic situation and security to future disasters. There is much more that can be understood in terms of household resilience as it relates to many factors of household resiliency in our model including physical vulnerabilities, financial capacity, information access, technological capacity, and most importantly, resilience perceptions.},
journal = {},
publisher = {IEEE},
author = {Tomaszewski, Brian and Scott, Timothy and Schneider, Jennifer and Walker, Rebekah and Rwanyiziri, Gaspard and Christian_Kwizera, Jean Francois and Vodacek, Anthony},
editor = {Perkins, Edward}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.