skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on June 19, 2025

Title: Contrast and complexity in the low temperature kinetics of CN(v=1) with O2 and NO: Simultaneous kinetics and ringdown in a uniform supersonic flow
Bimolecular rate coefficients were determined for the reaction CN(v=1) + NO and O2 using continuous wave cavity ringdown spectroscopy in a uniform supersonic flow (UF-CRDS). The well-matched timescales for ringdown and reaction under pseudo first-order conditions allow for the use of the SKaR method (simultaneous kinetics and ringdown) in which the full kinetic trace is obtained on each ringdown. The reactions offer an interesting contrast in that the CN(v=1) + NO system is nonreactive and proceeds by complex-mediated vibrational relaxation, while the CN(v=1) + O2 reaction is primarily reactive. The measured rate coefficients at 70 K are (2.49 ± 0.08) × 10-11 cm3 molecule-1 s-1, respectively, for the reaction of O2 and (10.49 ± 0.22) × 10-11 cm3 molecule-1 s-1 for reaction with NO. The rate for reaction with O2 is a factor two lower than previously reported for v=0 in the same temperature range, a surprising result, while that for NO is consistent with extrapolation of previous high temperature measurements to 70 K. The latter is also discussed in light of theoretical calculations and measurements of the rate constants for the association reaction in the high-pressure limit. The measurements are complicated by the presence of a metastable population of high-J CN formed by photolysis of the precursor BrCN, and a kinetic model is developed to treat the competing relaxation and reaction. It is particularly problematic for reactions at low temperature where the rotational relaxation and reaction have similar rates, precluding a reliable determination of the rate coefficients at 30 K. Also presented are important modifications to the data acquisition and control for the instrument that have yielded considerably enhanced stability and throughput.  more » « less
Award ID(s):
2247776
PAR ID:
10515766
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACS
Date Published:
Journal Name:
Journal of physical chemistry
ISSN:
0092-7325
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an experimental and theoretical investigation of the reaction of vibrationally excited CN ( v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN ( v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10 −10 and (3.06 ± 0.35) × 10 −10 cm 3 per molecule per s, respectively. The reaction rate measured for CN ( v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN ( v = 0) under similar conditions. We report the rate of the reaction of CN ( v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed. 
    more » « less
  2. Chirped-Pulse Fourier-Transform millimeter wave (CP-FTmmW) spectroscopy is a powerful method that enables detection of quantum state specific reactants and products in mixtures. We have successfully coupled this technique with a pulsed uniform Laval flow system to study photodissociation and reactions at low temperature, which we refer to as CPUF (“Chirped-Pulse/Uniform flow”). Detection by CPUF requires monitoring the free induction decay (FID) of the rotational coherence. However, the high collision frequency in high-density uniform supersonic flows can interfere with the FID and attenuate the signal. One way to overcome this is to sample the flow, but this can cause interference from shocks in the sampling region. This led us to develop an extended Laval nozzle that creates a uniform flow within the nozzle itself, after which the gas undergoes a shock-free secondary expansion to cold, low pressure conditions ideal for CP-FTmmW detection. Impact pressure measurements, commonly used to characterize Laval flows, cannot be used to monitor the flow within the nozzle. Therefore, we implemented a REMPI (resonance-enhanced multiphoton ionization) detection scheme that allows the interrogation of the conditions of the flow directly inside the extended nozzle, confirming the fluid dynamics simulations of the flow environment. We describe the development of the new 20 K extended flow, along with its characterization using REMPI and computational fluid dynamics. Finally, we demonstrate its application to the first low temperature measurement of the reaction kinetics of HCO with O2 and obtain a rate coefficient at 20 K of 6.66 ± 0.47 × 10−11 cm3 molec−1 s−1. 
    more » « less
  3. Abstract The gas phase reaction of the ground state cyano‐radical (CN (X2+)) with 2‐methylfuran (2‐MF) is investigated in a quasi‐static reaction cell at pressures ranging from 2.2 to 7.6 Torr and temperatures ranging from 304 to 440 K. The CN radicals are generated in their ground electronic state by pulsed laser photolysis of gaseous cyanogen iodide (ICN) at 266 nm. Their concentration is monitored as a function of reaction time using laser‐induced fluorescence at 387.3 nm on the B2+(ν′ = 0) ← X2+(ν″ = 0) vibronic band. The reaction rate coefficient is found to be rapid and independent of pressure and temperature. Over the investigated temperature and pressure ranges, the rate coefficient is measured to be 2.83 (± 0.18) × 10−10cm3molecules s−1. The enthalpies of the stationary points and transition states on the CN + 2‐MF potential energy surface are calculated using the CBS‐QB3 computational method. The kinetic results suggest the lack of a prereactive complex on the reaction entrance channel with either a very small or nonexistent entrance energy barrier. In addition, the potential energy surface calculations reveal only submerged barriers along the minimum energy path. Based on comparisons between previous CN reactions with unsaturated hydrocarbons, the most likely reaction pathway is CN addition onto one of the unsaturated carbons followed by either H or methyl elimination. The implications for the transformation of biomass‐derived fuels in nitrogen‐rich flames is discussed. 
    more » « less
  4. The acetylperoxy + HO 2 reaction has multiple impacts on the troposphere, with a triplet pathway leading to peracetic acid + O 2 (reaction (1a)) competing with singlet pathways leading to acetic acid + O 3 (reaction (1b)) and acetoxy + OH + O 2 (reaction (1c)). A recent experimental study has reported branching fractions for these three pathways ( α 1a , α 1b , and α 1c ) from 229 K to 294 K. We constructed a theoretical model for predicting α 1a , α 1b , and α 1c using quantum chemical and Rice–Ramsperger–Kassel–Marcus/master equation (RRKM/ME) simulations. Our main quantum chemical method was Weizmann-1 Brueckner Doubles (W1BD) theory; we combined W1BD and equation-of-motion spin-flip coupled cluster (SF) theory to treat open-shell singlet structures. Using RRKM/ME simulations that included all conformers of acetylperoxy–HO 2 pre-reactive complexes led to a 298 K triplet rate constant, k 1a = 5.11 × 10 −12 cm 3 per molecule per s, and values of α 1a in excellent agreement with experiment. Increasing the energies of all singlet structures by 0.9 kcal mol −1 led to a combined singlet rate constant, k 1b+1c = 1.20 × 10 −11 cm 3 per molecule per s, in good agreement with experiment. However, our predicted variations in α 1b and α 1c with temperature are not nearly as large as those measured, perhaps due to the inadequacy of SF theory in treating the transition structures controlling acetic acid + O 3 formation vs. acetoxy + OH + O 2 formation. 
    more » « less
  5. null (Ed.)
    A combined experimental and computational study of the reactivities of seven commonly used Michael acceptors paired with two thiols within the framework of photobase-catalyzed thiol-Michael reactions is reported. The rate coefficients of the propagation ( k P ), reverse propagation ( k -P ), chain-transfer ( k CT ), and overall reaction ( k overall ) were experimentally determined and compared with the well-accepted electrophilicity parameters of Mayr and Parr, and DFT-calculated energetics. Both Mayr's and Parr's electrophilicity parameters predict the reactivities of these structurally varying vinyl functional groups well, covering a range of overall reaction rate coefficients from 0.5 to 6.2 s −1 . To gain insight into the individual steps, the relative energies have been calculated using DFT for each of the stationary points along this step-growth reaction between ethanethiol and the seven alkenes. The free energies of the individual steps reveal the underlying factors that control the reaction barriers for propagation and chain transfer. Both the propagation and chain transfer steps are under kinetic control. These results serve as a useful guide for Michael acceptor selection to design and predict thiol-Michael-based materials with appropriate kinetic and material properties. 
    more » « less