The design and fabrication of robust metallic states in graphene nanoribbons (GNRs) are challenging because lateral quantum confinement and many-electron interactions induce electronic band gaps when graphene is patterned at nanometer length scales. Recent developments in bottom-up synthesis have enabled the design and characterization of atomically precise GNRs, but strategies for realizing GNR metallicity have been elusive. Here we demonstrate a general technique for inducing metallicity in GNRs by inserting a symmetric superlattice of zero-energy modes into otherwise semiconducting GNRs. We verify the resulting metallicity using scanning tunneling spectroscopy as well as first-principles density-functional theory and tight-binding calculations. Our results reveal that the metallic bandwidth in GNRs can be tuned over a wide range by controlling the overlap of zero-mode wave functions through intentional sublattice symmetry breaking.
more »
« less
Engineering Robust Metallic Zero-Mode States in Olympicene Graphene Nanoribbons
Metallic graphene nanoribbons (GNRs) represent a critical component in the toolbox of low-dimensional functional materials technolo-gy serving as 1D interconnects capable of both electronic and quantum information transport. The structural constraints imposed by on-surface bottom-up GNR synthesis protocols along with the limited control over orientation and sequence of asymmetric monomer building blocks during the radical step-growth polymerization has plagued the design and assembly of metallic GNRs. Here we report the regioregular synthesis of GNRs hosting robust metallic states by embedding a symmetric zero-mode superlattice along the backbone of a GNR. Tight-binding electronic structure models predict a strong nearest-neighbor electron hopping interaction between adjacent zero-mode states resulting in a dispersive metallic band. First principles DFT-LDA calculations confirm this prediction and the robust, metallic zero-mode band of olympicene GNRs (oGNRs) is experimentally corroborated by scanning tunneling spectroscopy.
more »
« less
- Award ID(s):
- 2203911
- PAR ID:
- 10515841
- Publisher / Repository:
- Journal of the American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 145
- Issue:
- 28
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 15162 to 15170
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nitrogen core-doping of graphene nanoribbons (GNRs) allows trigonal planar carbon atoms along the backbone of GNRs to be substituted by higher-valency nitrogen atoms. The excess valence electrons are injected into the π-orbital system of the GNR, thereby changing not only its electronic occupation but also its topological properties. We have observed this topological change by synthesizing dilute nitrogen core-doped armchair GNRs with a width of five atoms (N2-5-AGNRs). The incorporation of pairs of trigonal planar nitrogen atoms results in the emergence of topological boundary states at the interface between doped and undoped segments of the GNR. These topological boundary states are offset in energy by approximately ΔE = 300 meV relative to the topological end states at the termini of finite 5-AGNRs. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal that for finite GNRs the two types of topological states can interact through a linear combination of orbitals, resulting in a pair of asymmetric hybridized states. This behavior is captured by an effective Hamiltonian of nondegenerate diatomic molecules, where the analogous interatomic hybridization interaction strength is tuned by the distance between GNR topological modes.more » « less
-
The integration of low-energy states into bottom-up engineered graphene nanoribbons (GNRs) is a robust strategy for realizing materials with tailored electronic band structure for nanoelectronics. Low-energy zero-modes (ZMs) can be introduced into nanographenes (NGs) by creating an imbalance between the two sublattices of graphene. This phenomenon is exemplified by the family of [n]triangulenes (n ℕ). Here, we demonstrate the synthesis of [3]triangulene-GNRs, a regioregular one-dimensional (1D) chain of [3]triangulenes linked by five-membered rings. Hybridization between ZMs on adjacent [3]triangulenes leads to the emergence of a narrow band gap, Eg,exp ~ 0.7 eV, and topological end states that are experimentally verified using scanning tunneling spectroscopy (STS). Tight-binding and first-principles density functional theory (DFT) calculations within the local density approximation (LDA) corrobo-rate our experimental observations. Our synthetic design takes advantage of a selective on-surface head-to-tail coupling of monomer building blocks enabling the regioselective synthesis of [3]triangulene-GNRs. Detailed ab initio theory provides insight into the mecha-nism of on-surface radical polymerization, revealing the pivotal role of Au–C bond formation/breakage in driving selectivity.more » « less
-
Abstract Carbon‐based quantum dots (QDs) enable flexible manipulation of electronic behavior at the nanoscale, but controlling their magnetic properties requires atomically precise structural control. While magnetism is observed in organic molecules and graphene nanoribbons (GNRs), GNR precursors enabling bottom‐up fabrication of QDs with various spin ground states have not yet been reported. Here the development of a new GNR precursor that results in magnetic QD structures embedded in semiconducting GNRs is reported. Inserting one such molecule into the GNR backbone and graphitizing it results in a QD region hosting one unpaired electron. QDs composed of two precursor molecules exhibit nonmagnetic, antiferromagnetic, or antiferromagnetic ground states, depending on the structural details that determine the coupling behavior of the spins originating from each molecule. The synthesis of these QDs and the emergence of localized states are demonstrated through high‐resolution atomic force microscopy (HR‐AFM), scanning tunneling microscopy (STM) imaging, and spectroscopy, and the relationship between QD atomic structure and magnetic properties is uncovered. GNR QDs provide a useful platform for controlling the spin‐degree of freedom in carbon‐based nanostructures.more » « less
-
Exercising direct control over the unusual electronic structures arising from quantum confinement effects in graphene nanorib-bons (GNRs) is intimately linked to geometric boundary conditions imposed by the structure of the ribbon. Besides composition and position of substitutional dopant atoms, the symmetry of the unit cell, width, length, and termination of a GNR govern its electronic structure. Here we present a rational design that integrates each of these interdependent variables within a modular bottom-up syn-thesis. Our hybrid chemical approach relies on a catalyst transfer polymerization (CTP) that establishes excellent control over length, width, and end-groups. Complemented by a surface-assisted cy-clodehydrogenation step, uniquely enabled by matrix-assisted di-rect (MAD) transfer protocols, geometry and functional handles encoded in a polymer template are faithfully mapped onto the structure of the corresponding GNR. Bond-resolved scanning tun-nelling microscopy (BRSTM) and spectroscopy (STS) validate the robust correlation between polymer template design and GNR electronic structure.more » « less
An official website of the United States government
