skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robot-Assisted Targeted Gait Training
Background: Millions of people are affected yearly by “runner’s knee” and osteoarthritis, which is thought to be related to impact force. Millions are also affected by chronic falling, who are usually both difficult to identify and train. While at first glance, these topics seem to be entirely disconnected, there appears to be a need for a device that would address both issues. This paper proposes and investigates the use of the Variable Stiffness Treadmill (VST) as a targeted training device for the different populations described above. Materials and Methods: The VST is the authors’ unique robotic split-belt treadmill that can reduce the vertical ground stiffness of the left belt, while the right belt remains rigid. In this work, heart rate and energy expenditure are measured for healthy subjects in the challenging asymmetric environment created by the VST and compared to a traditional treadmill setting. Results: This study shows that this asymmetric environment results in an increase in heart rate and energy expenditure, an increase in activity in the muscles about the hip and knee, and a decrease in impact force at heel strike. Conclusions: Compliant environments, like those created on the VST, may be a beneficial tool as they can: reduce high-impact forces during running and walking, significantly engage the muscles surrounding the hip and knee allowing for targeted training and rehabilitation, and assist in identifying and training high fall-risk individuals.  more » « less
Award ID(s):
2020009 2015786 2025797 2018905
PAR ID:
10515998
Author(s) / Creator(s):
; ;
Publisher / Repository:
Index Copernicus Ltd
Date Published:
Journal Name:
Journal of Kinesiology and Exercise Sciences
Volume:
34
Issue:
105
ISSN:
2956-4581
Page Range / eLocation ID:
11 to 22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding legged locomotion in various environments is valuable for many fields, including robotics, biomechanics, rehabilitation, and motor control. Specifically, investigating legged locomotion in compliant terrains has recently been gaining interest for the robust control of legged robots over natural environments. At the same time, the importance of ground compliance has also been highlighted in poststroke gait rehabilitation. Currently, there are not many ways to investigate walking surfaces of varying stiffness. This article introduces the variable stiffness treadmill (VST) 2, an improvement of the first version of the VST, which was the first treadmill able to vary belt stiffness. In contrast to the VST 1, the device presented in this paper (VST 2) can reduce the stiffness of both belts independently, by generating vertical deflection instead of angular, while increasing the walking surface area from 0.20m2 to 0.74m2. In addition, both treadmill belts are now driven independently, while high-spatial-resolution force sensors under each belt allow for measurement of ground reaction forces and center of pressure. Through validation experiments, the VST 2 displays high accuracy and precision. The VST 2 has a stiffness range of 13kN/m to 1.5MN/m, error of less than 1%, and standard deviations of less than 2.2kN/m, demonstrating its ability to simulate low-stiffness environments reliably. The VST 2 constitutes a drastic improvement of the VST platform, a one-of-its-kind system that can improve our understanding of human and robotic gait while creating new avenues of research on biped locomotion, athletic training, and rehabilitation of gait after injury or disease. 
    more » « less
  2. Stroke is a major global issue, affecting millions every year. When a stroke occurs, survivors are often left with physical disabilities or difficulties, frequently marked by abnormal gait. Post-stroke gait normally presents as one of or a combination of unilaterally shortened step length, decreased dorsiflexion during swing phase, and decreased walking speed. These factors lead to an increased chance of falling and an overall decrease in quality of life due to a reduced ability to locomote quickly and safely under one’s own power. Many current rehabilitation techniques fail to show lasting results that suggest the potential for producing permanent changes. As technology has advanced, robot-assisted rehabilitation appears to have a distinct advantage, as the precision and repeatability of such an intervention are not matched by conventional human-administered therapy. The possible role in gait rehabilitation of the Variable Stiffness Treadmill (VST), a unique, robotic treadmill, is further investigated in this paper. The VST is a split-belt treadmill that can reduce the vertical stiffness of one of the belts, while the other belt remains rigid. In this work, we show that the repeated unilateral stiffness perturbations created by this device elicit an aftereffect of increased step length that is seen for over 575 gait cycles with healthy subjects after a single 10-min intervention. These long aftereffects are currently unmatched in the literature according to our knowledge. This step length increase is accompanied by kinematics and muscle activity aftereffects that help explain functional changes and have their own independent value when considering the characteristics of post-stroke gait. These results suggest that repeated unilateral stiffness perturbations could possibly be a useful form of post-stroke gait rehabilitation. 
    more » « less
  3. Tibiofemoral compression forces present during locomotion can result in high stress and risk damage to the knee. Powered assistance using a knee exoskeleton may reduce the knee load by reducing the work required by the muscles. However, the exact effect of assistance on the tibiofemoral force is unknown. The goal of this study was to investigate the effect of knee extension assistance during the early stance phase on the tibiofemoral force. Nine able-bodied adults walked on an inclined treadmill with a bilateral knee exoskeleton with assistance and with no assistance. Using an EMG-informed neuromusculoskeletal model, muscle forces were estimated, then utilized to estimate the tibiofemoral contact force. Results showed a 28% reduction in the knee moment, which resulted in approximately a 15% decrease in knee extensor muscle activation and a 20% reduction in subsequent muscle force, leading to a significant 10% reduction in peak and 9% reduction in average tibiofemoral contact force during the early stance phase (p < 0.05). The results indicate the tibiofemoral force is highly dependent on the knee kinetics and quadricep muscle activation due to their influence on knee extensor muscle forces, the primary contributor to the knee load. 
    more » « less
  4. Many stroke survivors suffer from hemiparesis, a condition that results in impaired walking ability. Walking ability is commonly assessed by walking speed, which is dependent on propulsive force generation both in healthy and stroke populations. Propulsive force generation is determined by two factors: ankle moment and the posture of the trailing limb during push-off. Recent work has used robotic assistance strategies to modulate propulsive force with some success. However, robotic strategies are limited by their high cost and the technical difficulty of fitting and operating robotic devices in a clinical setting. Here we present a new paradigm for goal-oriented gait training that utilizes a split belt treadmill to train both components of propulsive force generation, achieved by accelerating the treadmill belt of the trailing limb during push off. Belt accelerations require subjects to produce greater propulsive force to maintain their position on the treadmill and increase trailing limb angle through increased velocity of the accelerated limb. We hypothesized that locomotor adaptation to belt accelerations would result in measurable after effects in the form of increased propulsive force generation. We tested our protocol on healthy subjects at two acceleration magnitudes. Our results show that 79% of subjects significantly increased propulsive force generation following training, and that larger accelerations translated to larger, more persistent behavioral gains. 
    more » « less
  5. Abstract Navigating complex terrains requires dynamic interactions between the substrate, musculoskeletal, and sensorimotor systems. Current perturbation studies have mostly used visible terrain height perturbations, which do not allow us to distinguish among the neuromechanical contributions of feedforward control, feedback-mediated, and mechanical perturbation responses. Here, we use treadmill-belt speed perturbations to induce a targeted perturbation to foot speed only, and without terrain-induced changes in joint posture and leg loading at stance onset. Based on previous studies suggesting a proximo-distal gradient in neuromechanical control, we hypothesized that distal joints would exhibit larger changes in joint kinematics, compared to proximal joints. Additionally, we expected birds to use feedforward strategies to increase the intrinsic stability of gait. To test these hypotheses, seven adult guinea fowl were video recorded while walking on a motorized treadmill, during both steady and perturbed trials. Perturbations consisted of repeated exposures to a deceleration and acceleration of the treadmill-belt speed. Surprisingly, we found that joint angular trajectories and center of mass fluctuations remain very similar, despite substantial perturbation of foot velocity by the treadmill belt. Hip joint angular trajectories exhibit the largest changes, with the birds adopting a slightly more flexed position across all perturbed strides. Additionally, we observed increased stride duration across all strides, consistent with feedforward changes in the control strategy. The speed perturbations mainly influenced the timing of stance and swing, with the largest kinematic changes in the strides directly following a deceleration. Our findings do not support the general hypothesis of a proximo-distal gradient in joint control, as distal joint kinematics remain largely unchanged. Instead, we find that leg angular trajectory and the timing of stance and swing are most sensitive to this specific perturbation, and leg length actuation remains largely unchanged. Our results are consistent with modular task-level control of leg length and leg angle actuation, with different neuromechanical control and perturbation sensitivity in each actuation mode. Distal joints appear to be sensitive to changes in vertical loading but not foot fore-aft velocity. Future directions should include in vivo studies of muscle activation and force–length dynamics to provide more direct evidence of the sensorimotor control strategies for stability in response to belt-speed perturbations. 
    more » « less