Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies.
more »
« less
Devouring the Centaurus A Satellites: Modeling Dwarf Galaxies with Galacticus
Abstract For the first time, systematic studies of dwarf galaxies are being conducted throughout the Local Volume, including the dwarf satellites of the nearby giant elliptical galaxy Centaurus A (NGC 5128). Given Centaurus A's mass (roughly 10 times larger than that of the Milky Way), AGN activity, and recent major mergers, investigating the dwarf galaxies of Centaurus A and their star formation physics is imperative. However, simulating the faintest dwarfs around a galaxy of Centaurus A's mass with sufficient resolution in a hydrodynamic simulation is computationally expensive and currently infeasible. In this study, we seek to reproduce the properties of Centaurus A dwarfs using the semianalytic modelGalacticusto model dwarfs within a 700 kpc region around Centaurus A, corresponding approximately to its splashback radius. We investigate the effects of host halo mass and environment and predict observable properties of Centaurus A dwarfs using astrophysical prescriptions and parameters previously tuned to match properties of the Milky Way’s satellite galaxies. This approach allows us to approximately replicate cumulative luminosity functions, and luminosity–metallicity and luminosity–half-light-radii relations observed in the Centaurus A satellites. We provide predictions for the velocity dispersions, and star formation histories of Centaurus A dwarfs. The agreement between our predicted star formation histories for Centaurus A dwarfs and those of the Milky Way dwarfs implies the presence of universal processes governing star formation in dwarf galaxies. Overall, our findings shed light on the star formation physics of dwarf galaxies in the Centaurus A system, revealing insights into their properties and dependence on the host environment.
more »
« less
- Award ID(s):
- 1852267
- PAR ID:
- 10516098
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 968
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 78
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We study star formation histories (SFHs) of 500 dwarf galaxies (stellar mass $$M_\ast =10^5\!-\!10^9\, \rm {M}_\odot$$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of ‘satellite versus central’ and ‘LG versus individual MW versus isolated dwarf central.’ Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in the ‘near field’ have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated (true field) dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M* = 106–$$10^7\, \rm {M}_\odot$$ but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.more » « less
-
Abstract We have conducted a systematic search around the Milky Way (MW) analog NGC 253 (D= 3.5 Mpc), as a part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS)—a Magellan+Megacam survey to identify dwarfs and other substructures in resolved stellar light around MW-mass galaxies outside of the Local Group. In total, NGC 253 has five satellites identified by PISCeS within 100 kpc with an absoluteV-band magnitude ofMV< −7. We have additionally obtained deep Hubble Space Telescope imaging of four reported candidates beyond the survey footprint: Do III, Do IV, and dw0036m2828 are confirmed to be satellites of NGC 253, while SculptorSR is found to be a background galaxy. We find no convincing evidence for the presence of a plane of satellites surrounding NGC 253. We construct its satellite luminosity function, which is complete down toMV≲ −8 out to 100 kpc andMV≲ −9 out to 300 kpc, and compare it to those calculated for other Local Volume galaxies. Exploring trends in satellite counts and star-forming fractions among satellite systems, we find relationships with host stellar mass, environment, and morphology, pointing to a complex picture of satellite formation, and a successful model has to reproduce all of these trends.more » « less
-
Abstract We analyze the first cosmological baryonic zoom-in simulations of galaxies in dissipative self-interacting dark matter (dSIDM). The simulations utilize the FIRE-2 galaxy formation physics with the inclusion of dissipative dark matter self-interactions modeled as a constant fractional energy dissipation (fdiss= 0.75). In this paper, we examine the properties of dwarf galaxies withM*∼ 105–109M⊙in both isolation and within Milky Way–mass hosts. For isolated dwarfs, we find more compact galaxy sizes and promotion of disk formation in dSIDM with (σ/m) ≤ 1 cm2g−1. On the contrary, models with (σ/m) = 10 cm2g−1produce puffier stellar distributions that are in tension with the observed size–mass relation. In addition, owing to the steeper central density profiles, the subkiloparsec circular velocities of isolated dwarfs when (σ/m) ≥ 0.1 cm2g−1are enhanced by about a factor of 2, which are still consistent with the kinematic measurements of Local Group dwarfs but in tension with the Hirotation curves of more massive field dwarfs. Meanwhile, for satellites of Milky Way–mass hosts, the median circular velocity profiles are marginally affected by dSIDM physics, but dSIDM may help promote the structural diversity of dwarf satellites. The number of satellites is slightly enhanced in dSIDM, but the differences are small compared with the large host-to-host variations. In conclusion, the dSIDM models with (σ/m) ≳ 0.1 cm2g−1,fdiss= 0.75 are in tension in massive dwarfs (Mhalo∼ 1011M⊙) due to circular velocity constraints. However, models with lower effective cross sections (at this halo mass/velocity scale) are still viable and can produce nontrivial observable signatures.more » « less
-
ABSTRACT The abundance of the faintest galaxies provides insight into the nature of dark matter and the process of dwarf galaxy formation. In the LCDM scenario, low-mass haloes are so numerous that the efficiency of dwarf formation must decline sharply with decreasing halo mass in order to accommodate the relative scarcity of observed dwarfs and satellites in the Local Group. The nature of this decline contains important clues to the mechanisms regulating the onset of galaxy formation in the faintest systems. We explore here two possible models for the stellar mass (M*)–halo mass (M200) relation at the faint end, motivated by some of the latest LCDM cosmological hydrodynamical simulations. One model includes a sharp mass threshold below which no luminous galaxies form, as expected if galaxy formation proceeds only in systems above the hydrogen-cooling limit. In the second model, M* scales as a steep power law of M200 with no explicit cut-off, as suggested by recent semi-analytical work. Although both models predict satellite numbers around Milky Way-like galaxies consistent with current observations, they predict vastly different numbers of ultrafaint dwarfs and of satellites around isolated dwarf galaxies. Our results illustrate how the satellite mass function around dwarfs may be used to probe the M*–M200 relation at the faint end and to elucidate the mechanisms that determine which low-mass haloes ‘light up’ or remain dark in the LCDM scenario.more » « less
An official website of the United States government

