skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The effects of humidity on the electrical properties and carrier mobility of semiconducting polymers anion-exchange doped with hygroscopic salts
To improve their electrical conductivity for various applications, semiconducting polymer films are often chemically doped to increase their equilibrium charge carrier density. Recently, a novel doping method involving anion exchange has provided control over the identity of the counterions that reside in such films, leading to increased stability under ambient conditions. In this work, however, we show that by ion-exchanging 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane-doped poly(3-hexylthiophene-2,5-diyl) films with hygroscopic salts like bis(trifluoromethane)sulfonimide lithium or LiPF6, the doped film's electrical conductivity drops significantly when exposed to ambient humidity. The change in electrical conductivity depends directly on the degree of hygroscopicity of the counterion and can be over 50% with relatively modest changes in relative humidity (RH), and up to a factor of four between ambient and completely dry conditions. The film's humidity response is entirely reversible when adsorbed water is removed, potentially allowing the doped semiconducting polymer films to function as humidity sensors. Hall effect measurements show that the cause of the drop in conductivity with increasing RH is due to a decrease in carrier mobility and not due to de-doping. Our results emphasize that it is important to control the sample environment when making electrical measurements on anion-exchange doped semiconducting polymer films.  more » « less
Award ID(s):
2105896 2305152
PAR ID:
10516135
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Applied Physics Letters
Volume:
123
Issue:
20
ISSN:
0003-6951
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    N-type semiconducting polymers have been recently utilized in thermoelectric devices, however they have typically exhibited low electrical conductivities and poor device stability, in contrast to p-type semiconductors, which have been much higher performing. This is due in particular to the n-type semiconductor's low doping efficiency, and poor charge carrier mobility. Strategies to enhance the thermoelectric performance of n-type materials include optimizing the electron affinity (EA) with respect to the dopant to improve the doping process and increasing the charge carrier mobility through enhanced molecular packing. Here, we report the design, synthesis and characterization of fused electron-deficient n-type copolymers incorporating the electron withdrawing lactone unit along the backbone. The polymers were synthesized using metal-free aldol condensation conditions to explore the effect of enlarging the central phenyl ring to a naphthalene ring, on the electrical conductivity. When n-doped with N-DMBI, electrical conductivities of up to 0.28 S cm −1 , Seebeck coefficients of −75 μV K −1 and maximum Power factors of 0.16 μW m −1 K −2 were observed from the polymer with the largest electron affinity of −4.68 eV. Extending the aromatic ring reduced the electron affinity, due to reducing the density of electron withdrawing groups and subsequently the electrical conductivity reduced by almost two orders of magnitude. 
    more » « less
  2. Abstract Semiconducting polymers are of interest due to their solution processibility and broad electronic applications. Electrochemistry allows these wide bandgap semiconductors to be converted to conducting polymers by doping such polymers at various potentials. When polymers arep‐doped to improve their conductivity via electrochemical oxidation, various positively‐charged carriers are created, including polarons (singly‐charged) and bipolarons (doubly‐charged). Carrier creation is accompanied by anion intercalation from the electrolyte for charge balance, and this insertion requires ion mobility. In this work, poly(3‐hexylthiophene) (P3HT) with different regioregularities is used to understand the relationship between solvent swelling, which affects anion intercalation, and electrochemical doping. Cyclic voltammetry, optical absorption spectroscopy, and grazing incidence wide‐angle X‐ray scattering (GIWAXS) measurements are used to correlate the doping level with structural changes. In situ electrochemical quartz crystal microbalance (EQCM) measurements are used to quantify the swelling of the polymers dynamically during electrochemical cycling. Lastly, in situ conductivity measurements are done to measure the effect of swelling on the ionic and electronic conductivity. The results indicate that solvent swelling is required for bipolaron formation, and that swelling facilitates both the small structural changes need for polaron formation and the disordering required for bipolaron formation. 
    more » « less
  3. Thin films of amorphous small molecule semiconductors are widely used in organic light emitting displays and have promising applications in solar cells and thermoelectric devices. Adding dopants increases the conductivity of organic semiconductors, but high concentrations of dopants can disrupt their structural ordering, alter the shape of the electronic density of states in the material, and increase the effects of Coulomb interactions on charge transport. Electrical doping of the solution processable hole-transport material 2,2′,7,7′-tetrakis[ N , N -di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) was studied with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ) as a p-type dopant. Infiltration of F 4 TCNQ from the vapor phase into films of spiro-OMeTAD provided a route to highly doped films with up to 39 ± 2 mol% doping. Structural characterization confirmed that the films remain amorphous even at the highest doping levels with no apparent phase separation. We quantitatively determined the carrier concentration using UV-Vis spectroscopy to interpret the evolution of the electrical conductivity. Over the range of carrier concentrations (10 19 –10 20 1 cm −3 ), the electrical conductivity increased no more than linearly with carrier concentration, while the thermopower had a small increase with carrier concentration. The trends in conductivity and thermopower were related to the unique electronic structure of spiro-OMeTAD, which is able to support two carriers per molecule. Temperature-dependent conductivity measurements were used to further analyze the transport mechanism. 
    more » « less
  4. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored. 
    more » « less
  5. Abstract Since doped polymers require a charge‐neutralizing counter‐ion to maintain charge neutrality, tailored and high degrees of doping in organic semiconductors requires an understanding of the coupling between ionic and electronic carrier motion. A method of counter‐ion exchange is utilized using the polymeric semiconductor poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] ‐C14to deconvolute the effects of ionic/polaronic interactions with the electrical properties of doped semiconducting polymers. In particular, exchanging the counter‐ions of the dopant nitrosonium hexafluorophosphate enables investigation into the role of counter‐ion size from 5.2 to 8.2 Å in diameter. The orientational order of the polymeric crystallites is not affected with this exchange process while effectively modifying the counter‐ion distance to the charge carrier. Doped films have electrical conductivities of 320 S cm−1and are not sensitive to an increased ion‐polaron distance. It is posited that other factors dominate the electrical properties at a device scale, such as the morphology and presence of domain boundaries. Interestingly, the temperature stability of the doped film can be drastically improved with the use of counter‐ions containing less labile bonds. This platform serves as a unique way to retain the morphology of polymeric thin films while studying charge interactions at the local scale. 
    more » « less