skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: State of the California Current Ecosystem report in 2022: a tale of two La Niñas
2022 marked the third consecutive La Niña and extended the longest consecutive stretch of negative Oceanic Niño Index since 1998-2001. While physical and biological conditions in winter and spring largely adhered to prior La Niña conditions, summer and fall were very different. Similar to past La Niña events, in winter and spring coastal upwelling was either average or above average, temperature average or below average, salinity generally above average. In summer and fall, however, upwelling and temperature were generally average or slightly below average, salinity was close to average and chlorophyllawas close to average. Again, as during prior La Niña events, biomass of northern/southern copepods was above/below average off Oregon in winter, and body size of North Pacific krill in northern California was above average in winter. By contrast, later in the year the abundance of northern krill dropped off Oregon while southern copepods increased and body sizes of North Pacific krill fell in northern California. Off Oregon and Washington abundances of market squid and Pacific pompano (indicators of warm, non-typical La Niña conditions) were high. In the 20thcentury, Northern anchovy recruitment tended to be high during cold conditions, but despite mostly warm conditions from 2015-2021 anchovy populations boomed and remained high in 2022. Resident seabird reproductive success, which tended in the past to increase during productive La Niña conditions was highly variable throughout the system as common murre and pelagic cormorant, experienced complete reproductive failure at Yaquina Head, Oregon while Brandt’s cormorant reproduction was average. At three sampling locations off central California, however, common murre reproduction was close to or above average while both pelagic and Brandt’s cormorant were above average. California sealion reproduction has been above average each year since 2016, and pup weight was also above average in 2022, likely in response not to La Niña or El Niño but continuous high abundance of anchovy. The highly variable and often unpredictable physical and biological conditions in 2022 highlight a growing recognition of disconnects between basin-scale indices and local conditions in the CCE. “July-December 2022 is the biggest outlier from individual “strong” La Niña (events) ever going back to the 50s.” – Nate Mantua  more » « less
Award ID(s):
2224726
PAR ID:
10516153
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
11
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In late 2020, models predicted that a strong La Niña would take place for the first time since 2013, and we assessed whether physical and biological indicators in 2021 were similar to past La Niñas in the California Current Ecosystem (CCE). The Pacific Decadal Oscillation and Oceanic Niño Index indeed remained negative throughout 2021; the North Pacific Gyre Oscillation Index, however, remained strongly negative. The seventh largest marine heatwave on record was unexpectedly present from April to the end of 2021; however, similar to past La Niñas, this mass of warm water mostly remained seaward of the continental shelf. As expected from past La Niñas, upwelling and chlorophyll were mostly high and sea surface temperature was low throughout the CCE; however, values were close to average south of Point Conception. Similar to past La Niñas, abundances of lipid-rich, northern copepods off Oregon increased. In northern California, unlike past La Niñas, the body size of North Pacific krill (Euphausia pacifica) was close to average. Predictably, overall krill abundance was above average in far northern California but, unexpectedly, below average south of Cape Mendocino. Off Oregon, similar to past La Niñas, larval abundances of three of six coastal species rose, while five of six southern/offshore taxa decreased in 2021. Off California, as expected based on 2020, Northern Anchovy (Engraulis mordax) were very abundant, while Pacific Sardine (Sardinops sagax) were low. Similar to past La Niñas, market squid (Doryteuthis opalescens) and young of the year (YOY) Pacific Hake (Merluccius pacificus), YOY sanddabs (Citharichthysspp.), and YOY rockfishes (Sebastesspp.) increased. Southern mesopelagic (e.g., Panama lightfishVinciguerria lucetia, Mexican lampfishTriphoturus mexicanus) larvae decreased as expected but were still well above average, while northern mesopelagic (e.g., northern lampfishStenobrachius leucopsarus) larvae increased but were still below average. In line with predictions, most monitored bird species had above-average reproduction in Oregon and California. California sea lion (Zalophus californianus) pup count, growth, and weight were high given the abundant Anchovy forage. The CCE entered an enduring La Niña in 2021, and assessing the responses of various ecosystem components helped articulate aspects of the system that are well understood and those that need further study. 
    more » « less
  2. Understanding waterline variability at seasonal to interannual timescales is crucial for predicting coastal responses to climate forcing. However, relationships between large-scale climate variability and coastal morphodynamics remain underexplored beyond intensively monitored sites. This study leverages a newly developed 25-year (1997–2022) satellite-derived waterline dataset along the North American West Coast. Our results reveal distinct latitudinal patterns in seasonal waterline change, with excursions exceeding 25 m in the Pacific Northwest, decreasing to less than 10 m in Southern California and farther south. Waterline fluctuations strongly follow wave power in the Pacific Northwest (R = −0.78), northern California (R = −0.75), and Baja California (R = −0.62), while Baja California Sur aligns more with sea-level variations (R = −0.42). Interannually, waterline change exhibits latitudinal dependence: south of southern California, variability is low, with major erosion confined to strong El Niño-Southern Oscillation (ENSO) events, while northern regions show mixed responses. ENSO-driven storm track shifts modulate winter wave climate, resulting in enhanced (attenuated) erosion from southern California to Baja California Sur during El Niño (La Niña). However, further north, ENSO impacts are less consistent, reflecting a complex interplay of storm track displacement and intensification. These findings highlight the spatial complexity of ENSO-driven morphodynamics and provide a framework for assessing climate-induced coastal vulnerability. 
    more » « less
  3. The California Current System (CCS) has experienced large fluctuations in environmental conditions in recent years that have dramatically affected the biological community. Here we synthesize remotely sensed, hydrographic, and biological survey data from throughout the CCS in 2019–2020 to evaluate how recent changes in environmental conditions have affected community dynamics at multiple trophic levels. A marine heatwave formed in the north Pacific in 2019 and reached the second greatest area ever recorded by the end of summer 2020. However, high atmospheric pressure in early 2020 drove relatively strong Ekman-driven coastal upwelling in the northern portion of the CCS and warm temperature anomalies remained far offshore. Upwelling and cooler temperatures in the northern CCS created relatively productive conditions in which the biomass of lipid-rich copepod species increased, adult krill size increased, and several seabird species experienced positive reproductive success. Despite these conditions, the composition of the fish community in the northern CCS remained a mixture of both warm- and cool-water-associated species. In the southern CCS, ocean temperatures remained above average for the seventh consecutive year. Abundances of juvenile fish species associated with productive conditions were relatively low, and the ichthyoplankton community was dominated by a mixture of oceanic warm-water and cosmopolitan species. Seabird species associated with warm water also occurred at greater densities than cool-water species in the southern CCS. The population of northern anchovy, which has been resurgent since 2017, continued to provide an important forage base for piscivorous fishes, offshore colonies of seabirds, and marine mammals throughout the CCS. Coastal upwelling in the north, and a longer-term trend in warming in the south, appeared to be controlling the community to a much greater extent than the marine heatwave itself. 
    more » « less
  4. null (Ed.)
    Abstract El Niño and La Niña events show a wide range of durations over the historical record. The predictability of event duration has remained largely unknown, although multiyear events could prolong their climate impacts. To explore the predictability of El Niño and La Niña event duration, multiyear ensemble forecasts are conducted with the Community Earth System Model, version 1 (CESM1). The 10–40-member forecasts are initialized with observed oceanic conditions on 1 March, 1 June, and 1 November of each year during 1954–2015; ensemble spread is created through slight perturbations to the atmospheric initial conditions. The CESM1 predicts the duration of individual El Niño and La Niña events with lead times ranging from 6 to 25 months. In particular, forecasts initialized in November, near the first peak of El Niño or La Niña, can skillfully predict whether the event continues through the second year with 1-yr lead time. The occurrence of multiyear La Niña events can be predicted even earlier with lead times up to 25 months, especially when they are preceded by strong El Niño. The predictability of event duration arises from initial thermocline depth anomalies in the equatorial Pacific, as well as sea surface temperature anomalies within and outside the tropical Pacific. The forecast error growth, on the other hand, originates mainly from atmospheric variability over the North Pacific in boreal winter. The high predictability of event duration indicates the potential for extending 12-month operational forecasts of El Niño and La Niña events by one additional year. 
    more » « less
  5. Abstract The central stock of northern anchovy (CSNA; Engraulis mordax), the most abundant small pelagic fish in the southern California Current, is key to ecosystem functions. We review drivers of its population dynamics in relation to management. Springtime upwelling intensity lagged by 2 years co-varied positively with CSNA biomass, as did the abundance of Pacific sardine (Sardinops sagax; weakly negative). CSNA population dynamics indicate the need for a multi-species stock assessment, but given serious challenges with modelling population collapse and recovery dynamics, and its moderate fisheries, we suggest that sensible management could be a simple 2-tier harvest control rule designed to emphasize the key trophic role of CSNA in the ecosystem while maintaining moderate socio-economic services. We recommend a monitoring fishery of no more than 5 KMT year−1 split between central and southern California when the stock falls below the long-term median abundance estimate of 380 KMT across the California portion of its range, and a catch limit of 25 KMT year−1 when the stock is above this reference point. This rule would be precautionary, serving to maintain the most important small pelagic forage in the ecosystem, various fisheries interests, and information streams when the population is in a collapsed state. 
    more » « less