skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large-scale Overdensity of Lyman Break Galaxies around the z = 6.3 Ultraluminous Quasar J0100 + 2802
Abstract We study the environment of thez= 6.33 ultraluminous quasar SDSS J010013.02+280225.8 (J0100) to understand its association with large-scale structure. Theoretical models propose high-redshift quasars as markers of galaxy overdensities residing in the most massive dark matter halos (DMHs) in the early Universe. J0100 is an ultraluminous quasar with the most massive black hole known atz≳ 6, suggesting a high likelihood of residing in a massive DMH. We present wide-field (∼522 arcmin2) imaging in ther,i, andzbands from the Large Binocular Cameras on the Large Binocular Telescope, withY-andJ-band imaging from the Wide-field Infrared Camera on the Canada–France–Hawaii Telescope, centered on J0100. Applying color selections, we identify 23 objects asi-dropout Lyman break galaxy (LBG) candidates in the J0100 field. We use the deep photometric catalog in the 1.27 deg2COSMOS field to calculate the density of LBGs in a blank field, and to estimate the selection completeness and purity. The observed surface density of LBG candidates in the J0100 field corresponds to a galaxy overdensity ofδ= 4 (at 8.4σ). This large-scale overdensity suggests that the ∼22 arcmin2overdensity found by Kashino et al. using JWST data extends out to much larger scales. We calculate the angular autocorrelation function of the candidates and find a positive correlation on ≲10′ scales as well as evidence of asymmetries in their spatial distribution, further suggesting the direct detection of large-scale structure in the field of the ultraluminous quasar J0100.  more » « less
Award ID(s):
2308258
PAR ID:
10516195
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
968
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 118
Size(s):
Article No. 118
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Theoretical models predict thatz≳ 6 quasars are hosted in the most massive halos of the underlying dark matter distribution and thus would be immersed in protoclusters of galaxies. However, observations report inconclusive results. We investigate the 1.1 proper-Mpc2environment of thez= 7.54 luminous quasar ULAS J1342+0928. We search for Lyman-break galaxy (LBG) candidates using deep imaging from the Hubble Space Telescope (HST) in the Advanced Camera for Surveys (ACS)/F814W, Wide Field Camera 3 (WFC3)/F105W/F125W bands, and Spitzer/Infrared Array Camera at 3.6 and 4.5μm. We report a z phot = 7.69 0.23 + 0.33 LBG with magF125W= 26.41 at 223 projected proper kpc (pkpc) from the quasar. We find no HST counterpart to one [Cii] emitter previously found with the Atacama Large millimeter/submillimeter Array (ALMA) at 27 projected pkpc andz[C II]=7.5341 ± 0.0009 (Venemans et al. 2020). We estimate the completeness of our LBG candidates using results from Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey/GOODS deep blank field searches sharing a similar filter setup. We find that >50% of thez∼ 7.5 Lyman-break galaxies (LBGs) with magF125W> 25.5 are missed due to the absence of a filter redward of the Lyman break in F105W, hindering the UV color accuracy of the candidates. We conduct a QSO-LBG clustering analysis revealing a low LBG excess of 0.46 0.08 + 1.52 in this quasar field, consistent with an average or low-density field. Consequently, this result does not present strong evidence of an LBG overdensity around ULAS J1342+0928. Furthermore, we identify two LBG candidates with azphotmatching a confirmedz= 6.84 absorber along the line of sight to the quasar. All these galaxy candidates are excellent targets for follow-up observations with JWST and/or ALMA to confirm their redshift and physical properties. 
    more » « less
  2. Abstract Protoclusters, the progenitors of galaxy clusters, trace large scale structures in the early Universe and are important to our understanding of structure formation and galaxy evolution. To date, only a handful of protoclusters have been identified in the Epoch of Reionization. As one of the rarest populations in the early Universe, distant quasars that host active supermassive black holes are thought to reside in the most massive dark matter halos at that cosmic epoch and could thus potentially pinpoint some of the earliest protoclusters. In this Letter, we report the discovery of a massive protocluster around a luminous quasar atz= 6.63. This protocluster is anchored by the quasar and includes three [Cii] emitters atz∼ 6.63, 12 spectroscopically confirmed Lyαemitters (LAEs) at 6.54 <z≤ 6.64, and a large number of narrow-band-imaging selected LAE candidates at the same redshift. This structure has an overall overdensity of δ = 3.3 0.9 + 1.1 within ∼35 × 74 cMpc2on the sky and an extreme overdensity ofδ> 30 in its central region (i.e.,R≲ 2 cMpc). We estimate that this protocluster will collapse into a galaxy cluster with a mass of 6.9 1.4 + 1.2 × 10 15 M at the current epoch, more massive than the most massive clusters known in the local Universe such as Coma. In the quasar vicinity, we discover a double-peaked LAE, which implies that the quasar has a UV lifetime greater than 0.8 Myrs and has already ionized its surrounding intergalactic medium. 
    more » « less
  3. null (Ed.)
    ABSTRACT Massive galaxy overdensities at the peak epoch of cosmic star formation provide ideal testbeds for the formation theories of galaxies and large-scale structure. We report the confirmation of two massive galaxy overdensities at z = 2.24, BOSS1244 and BOSS1542, selected from the Mapping the Most Massive Overdensities Through Hydrogen (MAMMOTH) project using Lyα absorption from the intergalactic medium over the scales of 15−30 h−1 Mpc imprinted on the quasar spectra. We use Hα emitters (HAEs) as the density tracer and identify them using deep narrow-band H2S(1) and broad-band Ks imaging data obtained with the wide-field infrared camera (WIRCam) at the Canada–France–Hawaii Telescope. In total, 244 and 223 line emitters are detected in these two fields, and 196 ± 2 and 175 ± 2 are expected to be HAEs with an Hα flux of >2.5 × 10−17 erg s−1 cm−2 (corresponding to a star formation rate of >5 M⊙ yr−1). The detection rate of HAE candidates suggests an overdensity factor of δgal = 5.6 ± 0.3 and 4.9 ± 0.3 over the volume of 54 × 32 × 32 co-moving Mpc3. The overdensity factor increases two to three times when focusing on the high-density regions of scales 10–15  co-moving Mpc. Interestingly, the HAE density maps reveal that BOSS1244 contains a dominant structure, while BOSS1542 manifests as a giant filamentary structure. We measure the Hα luminosity functions (HLFs), finding that BOSS1244’s HLF is nearly identical to that of the general field at the same epoch, while BOSS1542 shows an excess of HAEs with high Hα luminosity, indicating the presence of enhanced star formation or active galactic nuclei activity. We conclude that the two massive MAMMOTH overdensities are undergoing a rapid galaxy mass assembly. 
    more » « less
  4. ABSTRACT Submillimetre galaxies (SMGs) are some of the most extreme star-forming systems in the Universe, whose place in the framework of galaxy evolution is as yet uncertain. It has been hypothesized that SMGs are progenitors of local early-type galaxies, requiring that SMGs generally reside in galaxy cluster progenitors at high redshift. We test this hypothesis and explore SMG environments using a narrow-band VLT/HAWK-I+GRAAL study of H $$\alpha$$ and [O iii] emitters around an unbiased sample of three ALMA-identified and spectroscopically confirmed SMGs at $$z \sim 2.3$$ and $$\sim 3.3$$, where these SMGs were selected solely on spectroscopic redshift. Comparing with blank-field observations at similar epochs, we find that one of the three SMGs lies in an overdensity of emission-line sources on the $$\sim 4$$ Mpc scale of the HAWK-I field of view, with overdensity parameter $$\delta _{g} = 2.6^{+1.4}_{-1.2}$$. A second SMG is significantly overdense only on $$\lesssim 1.6$$ Mpc scales and the final SMG is consistent with residing in a blank field environment. The total masses of the two overdensities are estimated to be $$\log (M_{h}/{\rm M}_{\odot }) =$$ 12.1–14.4, leading to present-day masses of $$\log (M_{h,z=0}/{\rm M}_{\odot }) =$$ 12.9–15.9. These results imply that SMGs occupy a range of environments, from overdense protoclusters or protogroups to the blank field, suggesting that while some SMGs are strong candidates for the progenitors of massive elliptical galaxies in clusters, this may not be their only possible evolutionary pathway. 
    more » « less
  5. Abstract The formation of the first supermassive black holes is expected to have occurred in some most pronounced matter and galaxy overdensities in the early universe. We have conducted a submillimeter wavelength continuum survey of 54z∼ 6 quasars using the Submillimeter Common-User Bolometre Array-2 on the James Clerk Maxwell Telescope to study the environments aroundz∼ 6 quasars. We identified 170 submillimeter galaxies (SMGs) with above 3.5σdetections in 450 or 850μm maps. Their far-IR luminosities are (2.2–6.4) × 1012L, and their star formation rates are ∼400–1200Myr−1. We also calculated the SMGs’ differential and cumulative number counts in a combined area of ∼620 arcmin2. To a 4σdetection (at ∼5.5 mJy), SMGs’ overdensity is 0.68 0.19 + 0.21 (±0.19), exceeding the blank-field source counts by a factor of 1.68. We find that 13/54 quasars show overdensities (at ∼5.5 mJy) ofδSMG∼ 1.5–5.4. The combined area of these 13 quasars exceeds the blank-field counts with the overdensity to 5.5 mJy ofδSMG 2.46 0.55 + 0.64 (±0.25) in the regions of ∼150 arcmin2. However, the excess is insignificant on the bright end (e.g., 7.5 mJy). We also compare results with previous environmental studies of Lyαemitters and Lyman break galaxies on a similar scale. Our survey presents the first systematic study of the environment of quasars atz∼ 6. The newly discovered SMGs provide essential candidates for follow-up spectroscopic observations to test whether they reside in the same large-scale structures as the quasars and search for protoclusters at an early epoch. 
    more » « less