skip to main content


This content will become publicly available on June 1, 2025

Title: A perceptual similarity space for speech based on self-supervised speech representations

Speech recognition by both humans and machines frequently fails in non-optimal yet common situations. For example, word recognition error rates for second-language (L2) speech can be high, especially under conditions involving background noise. At the same time, both human and machine speech recognition sometimes shows remarkable robustness against signal- and noise-related degradation. Which acoustic features of speech explain this substantial variation in intelligibility? Current approaches align speech to text to extract a small set of pre-defined spectro-temporal properties from specific sounds in particular words. However, variation in these properties leaves much cross-talker variation in intelligibility unexplained. We examine an alternative approach utilizing a perceptual similarity space acquired using self-supervised learning. This approach encodes distinctions between speech samples without requiring pre-defined acoustic features or speech-to-text alignment. We show that L2 English speech samples are less tightly clustered in the space than L1 samples reflecting variability in English proficiency among L2 talkers. Critically, distances in this similarity space are perceptually meaningful: L1 English listeners have lower recognition accuracy for L2 speakers whose speech is more distant in the space from L1 speech. These results indicate that perceptual similarity may form the basis for an entirely new speech and language analysis approach.

 
more » « less
Award ID(s):
2219843
NSF-PAR ID:
10516293
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The Journal of the Acoustical Society of America
Date Published:
Journal Name:
The Journal of the Acoustical Society of America
Volume:
155
Issue:
6
ISSN:
0001-4966
Page Range / eLocation ID:
3915 to 3929
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work on perceptual learning for speech has suggested that while high-variability training typically results in generalization, low-variability exposure can sometimes be sufficient for cross-talker generalization. We tested predictions of a similarity-based account, according to which, generalization depends on training-test talker similarity rather than on exposure to variability. We compared perceptual adaptation to second-language (L2) speech following single- or multiple-talker training with a round-robin design in which four L2 English talkers from four different first-language (L1) backgrounds served as both training and test talkers. After exposure to 60 L2 English sentences in one training session, cross-talker/cross-accent generalization was possible (but not guaranteed) following either multiple- or single-talker training with variation across training-test talker pairings. Contrary to predictions of the similarity-based account, adaptation was not consistently better for identical than for mismatched training-test talker pairings, and generalization patterns were asymmetrical across training-test talker pairs. Acoustic analyses also revealed a dissociation between phonetic similarity and cross-talker/cross-accent generalization. Notably, variation in adaptation and generalization related to variation in training phase intelligibility. Together with prior evidence, these data suggest that perceptual learning for speech may benefit from some combination of exposure to talker variability, training-test similarity, and high training phase intelligibility.

     
    more » « less
  2. While a range of measures based on speech production, language, and perception are possible (Manun et al., 2020) for the prediction and estimation of speech intelligibility, what constitutes second language (L2) intelligibility remains under-defined. Prosodic and temporal features (i.e., stress, speech rate, rhythm, and pause placement) have been shown to impact listener perception (Kang et al., 2020). Still, their relationship with highly intelligible speech is yet unclear. This study aimed to characterize L2 speech intelligibility. Acoustic analyses, including PRAAT and Python scripts, were conducted on 405 speech samples (30 s) from 102 L2 English speakers with a wide variety of backgrounds, proficiency levels, and intelligibility levels. The results indicate that highly intelligible speakers of English employ between 2 and 4 syllables per second and that higher or lower speeds are less intelligible. Silent pauses between 0.3 and 0.8 s were associated with the highest levels of intelligibility. Rhythm, measured by Δ syllable length of all content syllables, was marginally associated with intelligibility. Finally, lexical stress accuracy did not interfere substantially with intelligibility until less than 70% of the polysyllabic words were incorrect. These findings inform the fields of first and second language research as well as language education and pathology.

     
    more » « less
  3. Native talkers are able to enhance acoustic characteristics of their speech in a speaking style known as “clear speech,” which is better understood by listeners than “plain speech.” However, despite substantial research in the area of clear speech, it is less clear whether non-native talkers of various proficiency levels are able to adopt a clear speaking style and if so, whether this style has perceptual benefits for native listeners. In the present study, native English listeners evaluated plain and clear speech produced by three groups: native English talkers, non-native talkers with lower proficiency, and non-native talkers with higher proficiency. Listeners completed a transcription task (i.e., an objective measure of the speech intelligibility). We investigated intelligibility as a function of language background and proficiency and also investigated the acoustic modifications that are associated with these perceptual benefits. The results of the study suggest that both native and non-native talkers modulate their speech when asked to adopt a clear speaking style, but that the size of the acoustic modifications, as well as consequences of this speaking style for perception differ as a function of language background and language proficiency. 
    more » « less
  4. We present a simple approach to improve direct speech-to-text translation (ST) when the source language is low-resource: we pre-train the model on a high-resource automatic speech recognition (ASR) task, and then fine-tune its parameters for ST. We demonstrate that our approach is effective by pre-training on 300 hours of English ASR data to improve SpanishEnglish ST from 10.8 to 20.2 BLEU when only 20 hours of Spanish-English ST training data are available. Through an ablation study, we find that the pre-trained encoder (acoustic model) accounts for most of the improvement, despite the fact that the shared language in these tasks is the target language text, not the source language audio. Applying this insight, we show that pre-training on ASR helps ST even when the ASR language differs from both source and target ST languages: pre-training on French ASR also improves Spanish-English ST. Finally, we show that the approach improves performance on a true low-resource task: pre-training on a combination of English ASR and French ASR improves Mboshi-French ST, where only 4 hours of data are available, from 3.5 to 7.1 BLEU. 
    more » « less
  5. N/A (Ed.)
    Automatic pronunciation assessment (APA) plays an important role in providing feedback for self-directed language learners in computer-assisted pronunciation training (CAPT). Several mispronunciation detection and diagnosis (MDD) systems have achieved promising performance based on end-to-end phoneme recognition. However, assessing the intelligibility of second language (L2) remains a challenging problem. One issue is the lack of large-scale labeled speech data from non-native speakers. Additionally, relying only on one aspect (e.g., accuracy) at a phonetic level may not provide a sufficient assessment of pronunciation quality and L2 intelligibility. It is possible to leverage segmental/phonetic-level features such as goodness of pronunciation (GOP), however, feature granularity may cause a discrepancy in prosodic-level (suprasegmental) pronunciation assessment. In this study, Wav2vec 2.0-based MDD and Goodness Of Pronunciation feature-based Transformer are employed to characterize L2 intelligibility. Here, an L2 speech dataset, with human-annotated prosodic (suprasegmental) labels, is used for multi-granular and multi-aspect pronunciation assessment and identification of factors important for intelligibility in L2 English speech. The study provides a transformative comparative assessment of automated pronunciation scores versus the relationship between suprasegmental features and listener perceptions, which taken collectively can help support the development of instantaneous assessment tools and solutions for L2 learners. 
    more » « less