skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stemflow dissolved organic matter in mixed temperate forests: temporal and interspecific variation of optical indices and development of a stemflow-specific PARAFAC model
Abstract Stemflow is a conduit for the transport of canopy-derived dissolved organic matter (DOM) to the forest floor. This study examined the character of stemflow DOM for four tree species over four phenophases (leafless, emergence, leafed, and senescence for deciduous species and leafed-winter, emergence, leafed- spring/summer, and senescence for coniferous species) occurring in temperate forests; namely,Betula lentaL. (sweet birch),Fagus grandifoliaEhrh. (American beech),Liriodendron tulipiferaL. (yellow poplar), andPinus rigidaMill. (pitch pine). American beech exhibited the lowest average specific UV absorbance at 254 nm (SUVA254) values, while yellow poplar displayed the highest values. SUVA254values were largest in senescence and smallest in emergence. The spectral slope ratio was lower for pitch pine than the deciduous tree species. Humification index (HIX) values decreased across all species during the emergence phenophase. The developed and validated stemflow-specific four-component parallel factor analysis (PARAFAC) model demonstrated the combined influence of interspecific and temporal fluctuations on the composition of humic and protein-like substances within stemflow. By separating and examining stemflow DOM independent of throughfall, our study provides fresh insights into the spatiotemporal dynamics of stemflow inputs to near-trunk soils that may inform hot spots and hot moments theories.  more » « less
Award ID(s):
1934887
PAR ID:
10516409
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Biogeochemistry
Volume:
167
Issue:
8
ISSN:
1573-515X
Format(s):
Medium: X Size: p. 1025-1040
Size(s):
p. 1025-1040
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tree-derived dissolved organic matter (DOM) comprises a significant carbon flux within forested watersheds. Few studies have assessed the optical properties of tree-derived DOM. To increase understanding of the factors controlling tree-derived DOM quality, we measured DOM optical properties, dissolved organic carbon (DOC) and calcium concentrations in throughfall and stemflow for 17 individual rain events during summer and fall in a temperate deciduous forest in Vermont, United States. DOC and calcium fluxes in throughfall and stemflow were enriched on average 4 to 70 times incident fluxes in rain. A multiway model was developed using absorbance and fluorescence spectroscopy to further characterize DOM optical properties. Throughfall contained a higher percentage of protein-like DOM fluorescence than stemflow while stemflow was characterized by a higher percentage of humic-like DOM fluorescence. DOM absorbance spectral slopes in yellow birch (Betula alleghaniensis) stemflow were significantly higher than in sugar maple (Acer saccharum) stemflow. DOM optical metrics were not influenced by rainfall volume, but percent protein-like fluorescence increased in throughfall during autumn when leaves senesced. Given the potential influence of tree-derived DOM fluxes on receiving soils and downstream ecosystems, future modeling of DOM transport and soil biogeochemistry should represent the influence of differing DOM quality in throughfall and stemflow across tree species and seasons. 
    more » « less
  2. Monitoring diseases within tree canopies is challenging due to their inaccessibility and the complexity of canopy ecosystems. Here, we explore the potential of stemflow sampling as a novel, ground-based method for detecting and monitoring canopy-associated pathogens. In a case study focused on Litylenchus crenatae ssp. mccannii (LCM), the nematode associated with Beech Leaf Disease (BLD), we collected stemflow samples from 18 Fagus grandifolia Ehrh. (American beech) trees across 12 storm events. eDNA assays detected LCM presence in 7 of those storms, with quantitative PCR-derived gene concentrations ranging from 80 to 158,000 copies mL−1. Higher detections and concentrations coincided with leaf senescence and bud formation periods, and they correlated conditionally with event rainfall amount and pre-storm changes in relative humidity. Although based on a single site and season, these findings demonstrate the potential for stemflow sampling to capture a pathogen’s eDNA (i.e., canopy distress signals) at ground level. This method could complement traditional monitoring, offering another affordable, non-invasive tool for pathogen detection. Additional validation, particularly regarding live versus dead organisms and across varied site conditions, will be essential to evaluate the breadth of value stemflow eDNA offers for canopy disease management and ecological research. 
    more » « less
  3. null (Ed.)
    Previous studies have shown that algal-derived dissolved organic matter (DOM) has a strong influence on the formation of disinfection byproducts (DBPs) during the treatment of drinking water. In the summer of 2010, we evaluated the role of nitrogen and phosphorus loading and phytoplankton abundance as drivers of the concentrations and quality of DOM and the associated DBP formation in 30 reservoirs in the mountains and plains of the State of Colorado. Optical properties such as Specific Ultraviolet Absorbance at 254 nm (SUVA 254 ) and fluorescence spectroscopy were used to characterize DOM quality. Nutrient concentrations such as total nitrogen were also assessed and were associated with high concentrations of chlorophyll a (Chl-a). In turn, high total organic carbon (TOC) concentrations were associated with high concentrations of Chl-a, and the DOM in these reservoirs had a fluorescence signature indicative of contributions from phytoplankton growth. The reservoirs with TOC concentrations above 4 mgC/L were predominantly located in the plains and many are impacted by agricultural runoff and wastewater discharges, rather than in the mountains and are characterized by warm water conditions and shallow depths. For a subset of fourteen reservoirs, we characterized the composition of the phytoplankton using a rapid imaging microscopy technique and observed a dominance by filamentous Cyanobacteria in reservoirs with TOC concentrations above 4 mgC/L. The combination of high TOC concentrations with microbial characteristics resulted in high potential for production of two major classes of regulated DBPs, trihalomethanes and haloacetic acids. While fluorescence spectroscopy was useful in confirming the contribution of phytoplankton growth to high TOC concentrations, evaluation of predictive models for DBP yields found that all equally predictive models included SUVA 254 and some of these models also included fluorescence indices or logTOC. These findings provide a limnological context in support of the recent guidelines that have been implemented for protection of high-quality drinking water supplies in the State of Colorado. 
    more » « less
  4. Spring and Fall leaf phenology observations have been made at 9 locations at the Hubbard Brook Experimental Forest since 1989. Timing and progression of spring leaf out and fall senescence are recorded for 3 dominant tree species, sugar maple, yellow birch, and beech, in treated and untreated watersheds and high and low elevations. Weekly measurements are taken during the active period of the fall or spring season. These data were gathered at the Hubbard Brook Experimental Forest in North Woodstock, NH, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Spring and Fall leaf phenology observations have been made at 9 locations at the Hubbard Brook Experimental Forest since 1989. Timing and progression of spring leaf out and fall senescence are recorded for 3 dominant tree species, sugar maple, yellow birch, and beech, in treated and untreated watersheds and high and low elevations. Weekly measurements are taken during the active period of the fall or spring season. These data were gathered at the Hubbard Brook Experimental Forest in North Woodstock, NH, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less