skip to main content


Title: Agricultural landscape simplification affects wild plant reproduction indirectly through herbivore-mediated changes in floral display
Abstract

As natural landscapes are modified and converted into simplified agricultural landscapes, the community composition and interactions of organisms persisting in these modified landscapes are altered. While many studies examine the consequences of these changing interactions for crops, few have evaluated the effects on wild plants. Here, we examine how pollinator and herbivore interactions affect reproductive success for wild resident and phytometer plants at sites along a landscape gradient ranging from natural to highly simplified. We tested the direct and indirect effects of landscape composition on plant traits and reproduction mediated by insect interactions. For phytometer plants exposed to herbivores, we found that greater landscape complexity corresponded with elevated herbivore damage, which reduced total flower production but increased individual flower size. Though larger flowers increased pollination, the reduction in flowers ultimately reduced plant reproductive success. Herbivory was also higher in complex landscapes for resident plants, but overall damage was low and therefore did not have a cascading effect on floral display and reproduction. This work highlights that landscape composition directly affects patterns of herbivory with cascading effects on pollination and wild plant reproduction. Further, the absence of an effect on reproduction for resident plants suggests that they may be adapted to their local insect community.

 
more » « less
PAR ID:
10516468
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
14
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise

    Plant maternal effects on offspring phenotypes are well documented. However, little is known about how herbivory on maternal plants affects offspring fitness. Furthermore, while inbreeding is known to reduce plant reproductive output, previous studies have not explored whether and how such effects may extend across generations. Here, we addressed the transgenerational consequences of herbivory and maternal plant inbreeding on the reproduction of Solanum carolinenseoffspring.

    Methods

    Manduca sextacaterpillars were used to inflict weekly damage on inbred and outbredS. carolinensematernal plants. Cross‐pollinations were performed by hand to produce seed from herbivore‐damaged outbred plants, herbivore‐damaged inbred plants, undamaged outbred plants, and undamaged inbred plants. The resulting seeds were grown in the greenhouse to assess emergence rate and flower production in the absence of herbivores. We also grew offspring in the field to examine reproductive output under natural conditions.

    Results

    We found transgenerational effects of herbivory and maternal plant inbreeding on seedling emergence and reproductive output. Offspring of herbivore‐damaged plants had greater emergence, flowered earlier, and produced more flowers and seeds than offspring of undamaged plants. Offspring of outbred maternal plants also had greater seedling emergence and reproductive output than offspring of inbred maternal plants, even though all offspring were outbred. Moreover, the effects of maternal plant inbreeding were more severe when plant offspring were grown in field conditions.

    Conclusions

    This study demonstrates that both herbivory and inbreeding have fitness consequences that extend across generations even in outbred progeny.

     
    more » « less
  2. Plant–herbivore and plant–pollinator interactions are both well-studied, but largely independent of each other. It has become increasingly recognized, however, that pollination and herbivory interact extensively in nature, with consequences for plant fitness. Here, we explore the idea that trade-offs in investment in insect flight and reproduction may be a mechanistic link between pollination and herbivory. We first provide a general background on trade-offs between flight and fecundity in insects. We then focus on Lepidoptera; larvae are generally herbivores while most adults are pollinators, making them ideal to study these links. Increased allocation of resources to flight, we argue, potentially increases a Lepidopteran insect pollinator’s efficiency, resulting in higher plant fitness. In contrast, allocation of resources to reproduction in the same insect species reduces plant fitness, because it leads to an increase in herbivore population size. We examine the sequence of resource pools available to herbivorous Lepidopteran larvae (maternally provided nutrients to the eggs, as well as leaf tissue), and to adults (nectar and nuptial gifts provided by the males to the females), which potentially are pollinators. Last, we discuss how subsequent acquisition and allocation of resources from these pools may alter flight–fecundity trade-offs, with concomitant effects both on pollinator performance and the performance of larval herbivores in the next generation. Allocation decisions at different times during ontogeny translate into costs of herbivory and/or benefits of pollination for plants, mechanistically linking herbivory and pollination. 
    more » « less
  3. Abstract Background

    Damage from insect herbivores can elicit a wide range of plant responses, including reduced or compensatory growth, altered volatile profiles, or increased production of defence compounds. Specifically, herbivory can alter floral development as plants reallocate resources towards defence and regrowth functions. For pollinator-dependent species, floral quantity and quality are critical for attracting floral visitors; thus, herbivore-induced developmental effects that alter either floral abundance or attractiveness may have critical implications for plant reproductive success. Based on past work on resource trade-offs, we hypothesize that herbivore damage-induced effects are stronger in structural floral traits that require significant resource investment (e.g. flower quantity), as plants reallocate resources towards defence and regrowth, and weaker in secondary floral traits that require less structural investment (e.g. nectar rewards).

    Methods

    In this study, we simulated early-season herbivore mechanical damage in the domesticated jack-o-lantern pumpkin Cucurbita pepo ssp. pepo and measured a diverse suite of floral traits over a 60-d greenhouse experiment.

    Key Results

    We found that mechanical damage delayed the onset of male anthesis and reduced the total quantity of flowers produced. Additionally, permutational multivariate analysis of variance (PERMANOVA) indicated that mechanical damage significantly impacts overall floral volatile profile, though not output of sesquiterpenoids, a class of compounds known to recruit specialized cucumber beetle herbivores and squash bee pollinators.

    Conclusions

    We show that C. pepo spp. pepo reduces investment in male flower production following mechanical damage, and that floral volatiles do exhibit shifts in production, indicative of damage-induced trait plasticity. Such reductions in male flower production could reduce the relative attractiveness of damaged plants to foraging pollinators in this globally relevant cultivated species.

     
    more » « less
  4. Abstract

    Phenological shifts have the potential to change species interactions, but relatively few studies have used experimental manipulations to examine the effects of variation in timing of an interspecific interaction across a series of life stages of a species. Although previous experimental studies have examined the consequences of phenological timing in plant–herbivore interactions for both plants and their herbivores, less is known about their effects on subsequent plant reproduction. Here, we conducted an experiment to determine how shifts in the phenological timing of monarch (Danaus plexippus) larval herbivory affected milkweed (Asclepias fascicularis) host plant performance, including effects on growth and subsequent effects on flower and seed pod phenology and production. We found that variation in the timing of herbivory affected both plant growth and reproduction, with measurable effects several weeks to several months after herbivory ended. The timing of herbivory had qualitatively different effects on vegetative and reproductive biomass: early‐season herbivory had the strongest effects on plant size, whereas late‐season herbivory had the strongest effects on the production of viable seeds. These results show that phenological shifts in herbivory can have persistent and qualitatively different effects on different life stages across the season.

     
    more » « less
  5. Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success. 
    more » « less