skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Regulation of a single inositol 1‐phosphate synthase homeologue by HSFA6B contributes to fibre yield maintenance under drought conditions in upland cotton
Summary

Drought stress substantially impacts crop physiology resulting in alteration of growth and productivity. Understanding the genetic and molecular crosstalk between stress responses and agronomically important traits such as fibre yield is particularly complicated in the allopolyploid species, upland cotton (Gossypium hirsutum), due to reduced sequence variability between A and D subgenomes. To better understand how drought stress impacts yield, the transcriptomes of 22 genetically and phenotypically diverse upland cotton accessions grown under well‐watered and water‐limited conditions in the Arizona low desert were sequenced. Gene co‐expression analyses were performed, uncovering a group of stress response genes, in particular transcription factors GhDREB2A‐A and GhHSFA6B‐D, associated with improved yield under water‐limited conditions in an ABA‐independent manner. DNA affinity purification sequencing (DAP‐seq), as well as public cistrome data from Arabidopsis, were used to identify targets of these two TFs. Among these targets were two lint yield‐associated genes previously identified through genome‐wide association studies (GWAS)‐based approaches,GhABP‐DandGhIPS1‐A. Biochemical and phylogenetic approaches were used to determine thatGhIPS1‐Ais positively regulated by GhHSFA6B‐D, and that this regulatory mechanism is specific toGossypiumspp. containing the A (old world) genome. Finally, an SNP was identified within the GhHSFA6B‐D binding site inGhIPS1‐Athat is positively associated with yield under water‐limiting conditions. These data lay out a regulatory connection between abiotic stress and fibre yield in cotton that appears conserved in other systems such as Arabidopsis.

 
more » « less
Award ID(s):
2427055 2226270 2102120 2023310 2109178
PAR ID:
10516530
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Plant Biotechnology Journal
Volume:
22
Issue:
10
ISSN:
1467-7644
Format(s):
Medium: X Size: p. 2756-2772
Size(s):
p. 2756-2772
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    The development of salt‐tolerant genotypes is pivotal for the effective utilization of salinized land and to increase global crop productivity. Several cotton species comprise the most important source of textile fibers globally, and these are increasingly grown on marginal or increasingly saline agroecosystems. The allopolyploid cotton species also provide a model system for polyploid research, of relevance here because polyploidy was suggested to be associated with increased adaptation to stress. To evaluate the genetic variation of salt tolerance among cotton species, 17 diverse accessions of allopolyploid (AD‐genome) and diploid (A‐ and D‐genome)Gossypiumwere evaluated for a total of 29 morphological and physiological traits associated with salt tolerance. For most morphological and physiological traits, cotton accessions showed highly variable responses to 2 weeks of exposure to moderate (50 mmNaCl) and high (100 mmNaCl) hydroponic salinity treatments. Our results showed that the most salt‐tolerant species were the allopolyploidGossypium mustelinumfrom north‐east Brazil, the D‐genome diploidGossypium klotzschianumfrom the Galapagos Islands, followed by the A‐genome diploids of Africa and Asia. Generally, A‐genome accessions outperformed D‐genome cottons under salinity conditions. Allopolyploid accessions from either diploid genomic group did not show significant differences in salt tolerance, but they were more similar to one of the two progenitor lineages. Our findings demonstrate that allopolyploidy in itself need not be associated with increased salinity stress tolerance and provide information for using the secondaryGossypiumgene pool to breed for improved salt tolerance.

     
    more » « less
  2. Abstract

    Cotton (Gossypium hirsutumL.) is the key renewable fibre crop worldwide, yet its yield and fibre quality show high variability due to genotype-specific traits and complex interactions among cultivars, management practices and environmental factors. Modern breeding practices may limit future yield gains due to a narrow founding gene pool. Precision breeding and biotechnological approaches offer potential solutions, contingent on accurate cultivar-specific data. Here we address this need by generating high-quality reference genomes for three modern cotton cultivars (‘UGA230’, ‘UA48’ and ‘CSX8308’) and updating the ‘TM-1’ cotton genetic standard reference. Despite hypothesized genetic uniformity, considerable sequence and structural variation was observed among the four genomes, which overlap with ancient and ongoing genomic introgressions from ‘Pima’ cotton, gene regulatory mechanisms and phenotypic trait divergence. Differentially expressed genes across fibre development correlate with fibre production, potentially contributing to the distinctive fibre quality traits observed in modern cotton cultivars. These genomes and comparative analyses provide a valuable foundation for future genetic endeavours to enhance global cotton yield and sustainability.

     
    more » « less
  3. Summary

    Understanding the genetic and physiological basis of abiotic stress tolerance under field conditions is key to varietal crop improvement in the face of climate variability. Here, we investigate dynamic physiological responses to water stressin silicoand their relationships to genotypic variation in hydraulic traits of cotton (Gossypium hirsutum), an economically important species for renewable textile fiber production.

    In conjunction with an ecophysiological process‐based model, heterogeneous data (plant hydraulic traits, spatially‐distributed soil texture, soil water content and canopy temperature) were used to examine hydraulic characteristics of cotton, evaluate their consequences on whole plant performance under drought, and explore potential genotype × environment effects.

    Cotton was found to have R‐shaped hydraulic vulnerability curves (VCs), which were consistent under drought stress initiated at flowering. Stem VCs, expressed as percent loss of conductivity, differed across genotypes, whereas root VCs did not. Simulation results demonstrated how plant physiological stress can depend on the interaction between soil properties and irrigation management, which in turn affect genotypic rankings of transpiration in a time‐dependent manner.

    Our study shows how a process‐based modeling framework can be used to link genotypic variation in hydraulic traits to differential acclimating behaviors under drought.

     
    more » « less
  4. Abstract

    Cisandtransregulatory divergence underlies phenotypic and evolutionary diversification. Relatively little is understood about the complexity of regulatory evolution accompanying crop domestication, particularly for polyploid plants. Here, we compare the fiber transcriptomes between wild and domesticated cotton (Gossypium hirsutum) and their reciprocal F1hybrids, revealing genome-wide (~15%) and often compensatorycisandtransregulatory changes under divergence and domestication. The high level oftransevolution (54%–64%) observed is likely enabled by genomic redundancy following polyploidy. Our results reveal that regulatory variation is significantly associated with sequence evolution, inheritance of parental expression patterns, co-expression gene network properties, and genomic loci responsible for domestication traits. With respect to regulatory evolution, the two subgenomes of allotetraploid cotton are often uncoupled. Overall, our work underscores the complexity of regulatory evolution during fiber domestication and may facilitate new approaches for improving cotton and other polyploid plants.

     
    more » « less
  5. null (Ed.)
    Drought stress is a major constraint in global maize production, causing almost 30–90% of the yield loss depending upon growth stage and the degree and duration of the stress. Here, we report that ectopic expression of Arabidopsis glutaredoxin S17 (AtGRXS17) in field grown maize conferred tolerance to drought stress during the reproductive stage, which is the most drought sensitive stage for seed set and, consequently, grain yield. AtGRXS17-expressing maize lines displayed higher seed set in the field, resulting in 2-fold and 1.5-fold increase in yield in comparison to the non-transgenic plants when challenged with drought stress at the tasseling and silking/pollination stages, respectively. AtGRXS17-expressing lines showed higher relative water content, higher chlorophyll content, and less hydrogen peroxide accumulation than wild-type (WT) control plants under drought conditions. AtGRXS17-expressing lines also exhibited at least 2-fold more pollen germination than WT plants under drought stress. Compared to the transgenic maize, WT controls accumulated higher amount of proline, indicating that WT plants were more stressed over the same period. The results present a robust and simple strategy for meeting rising yield demands in maize under water limiting conditions. 
    more » « less