Quantitative reasoning (QR) is the ability to apply mathematics and statistics in the context of real-life situations and scientific problems. It is an important skill that students require to make sense of complex biological phenomena and handle large datasets in biology courses and research as well as in professional contexts. Biology educators and researchers are responding to the increasing need for QR through curricular reforms and research into biology education. This qualitative study investigates how undergraduate biology instructors implement QR into their teaching. The study used pedagogical content knowledge (PCK) and a QR framework to explore instructors’ instructional goals, strategies, and perceived challenges and affordances in undergraduate biology instruction. The participants included 21 biology faculty across various institutions in the United States, who intentionally integrated QR in their instruction. Semi-structured interviews were used to collect data focusing on participants’ beliefs, experiences, and classroom practices. Findings indicated that instructors adapt their QR instruction based on course level and student preparedness. In lower-division courses, strategies emphasized building foundational skills, reducing math anxiety, and using scaffolded instruction to promote confidence. In upper-division courses, instructors expected greater math fluency but still encountered a wide range of student abilities, prompting a focus on correcting misconceptions in integrating math knowledge and fostering deeper conceptual understanding in biology. Many instructors reported that their personal and educational experiences, especially struggles with math, often shaped their inclusive and empathetic teaching practices. Additionally, instructors’ research backgrounds influenced instructional design, particularly in the use of authentic data, statistical tools, and real-world applications. Instructors’ teaching experiences led to refinement in lesson planning, pacing, and active learning strategies. Despite their efforts, instructors faced both internal and external challenges in implementing QR, including discomfort with teaching math, time limitations, student resistance, and institutional barriers. However, affordances such as departmental support, interdisciplinary collaboration, and curricular flexibility helped to overcome some of these challenges. This study highlights the complex relationships between instructors’ experiences, beliefs, and contextual factors in shaping QR instruction. This calls for professional development that supports reflective practice, builds interdisciplinary competence, and promotes instructional strategies that bridge biology and mathematics and will help instructors design a learning environment that better support students’ development of QR skills. These findings offer valuable guidance for professional development aimed at helping biology instructors incorporate quantitative reasoning into their teaching. Such efforts can better equip students to meet the quantitative demands of modern biology and promote their continued engagement in STEM fields through more inclusive and integrated instructional approaches.
more »
« less
Redesigning the introductory psychology course to support statistical literacy at an open-admissions college.
The American Psychological Association Guidelines for the Psychology Major emphasize the development of scientific inquiry and critical thinking skills. We present findings from a department-wide effort to promote statistical literacy in introductory psychology at a nonselective public college. We examined course outcomes across 10 course sections taught in person or online with varying enrollments (total N = 485 students). Instructors administered online assignments about psychological research via Qualtrics, featuring statistics exercises and Excel worksheet activities. As a low-stakes introduction to statistical reasoning, instructors graded work based on completion rather than accuracy. Students completed the majority of Qualtrics assignments and about half of the Excel worksheets. As potential factors related to student outcomes, we considered external factors, internal factors, and student skills, and included demographic factors as control variables. Students with greater work obligations and those who completed work on smartphones or tablets (external factors) completed fewer assignments than their peers. Students with higher self-efficacy and greater anxiety about statistics (internal factors) completed more Qualtrics assignments, and those with higher statistics knowledge and reading comprehension (student skills) completed more Excel worksheets. Course section characteristics (modality, enrollment) were unrelated to student outcomes. The results demonstrate the feasibility of using low-stakes assignments to promote statistical literacy while emphasizing psychology as an empirical science. Future studies should assess learning gains associated with the curriculum and identify specific pedagogical features (e.g., feedback, active learning) that increase student engagement.
more »
« less
- Award ID(s):
- 2318196
- PAR ID:
- 10516574
- Publisher / Repository:
- American Psychological Association
- Date Published:
- Journal Name:
- Scholarship of Teaching and Learning in Psychology
- ISSN:
- 2332-2101
- Subject(s) / Keyword(s):
- statistical literacy introductory psychology low-stakes assignments active learning data analysis
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coffman, Clark (Ed.)Instructors use a variety of online formative assessment (FA) activities to support learning outside class. Previous studies have revealed barriers for students in online courses, but little is known about the barriers students experience when completing online FA assignments. Understanding these barriers to access is critical to fostering more inclusive learning for all students. Using a framework from previous work in online learning, we examined student perceptions of online FA access with respect to five barrier categories: technical resources, instructor organization, social interactions, personal engagement, and learning environment. We developed and administered a survey to more than 1200 undergraduate biology students at 2-year and 4-year institutions. Students responded to statements using Likert scales and open-ended prompts. Statistical models indicated differences in access across the barrier categories and revealed that demographic characteristics were associated with certain barrier categories. Furthermore, technical resources, instructor organization, and personal engagement barriers were associated with lower course performance. In open-ended responses, students most frequently suggested that changes to scheduling logistics, course delivery, and FA format would improve their online FA experience. We discuss how these findings and student suggestions can inform instruction, particularly how instructors can alter their FA characteristics to better suit their student populations.more » « less
-
Asynchronous online courses are popular because they offer benefits to both students and instructors. Students benefit from the convenience, flexibility, affordability, freedom of geography, and access to information. Instructors and institutions benefit by having a broad geographical reach, scalability, and cost-savings of no physical classroom. A challenge with asynchronous online courses is providing students with engaging, collaborative and interactive experiences. Here, we describe how an online poster symposium can be used as a unique educational experience and assessment tool in a large-enrollment (e.g., 500 students), asynchronous, natural science, general education (GE) course. The course, Introduction to Environmental Science (ENR2100), was delivered using distance education (DE) technology over a 15-week semester. In ENR2100 students learn a variety of topics including freshwater resources, surface water, aquifers, groundwater hydrology, ecohydrology, coastal and ocean circulation, drinking water, water purification, wastewater treatment, irrigation, urban and agricultural runoff, sediment and contaminant transport, water cycle, water policy, water pollution, and water quality. Here we present a is a long-term study that takes place from 2017 to 2022 (before and after COVID-19) and involved 5,625 students over 8 semesters. Scaffolding was used to break up the poster project into smaller, more manageable assignments, which students completed throughout the semester. Instructions, examples, how-to videos, book chapters and rubrics were used to accommodate Students’ different levels of knowledge. Poster assignments were designed to teach students how to find and critically evaluate sources of information, recognize the changing nature of scientific knowledge, methods, models and tools, understand the application of scientific data and technological developments, and evaluate the social and ethical implications of natural science discoveries. At the end of the semester students participated in an asynchronous online poster symposium. Each student delivered a 5-min poster presentation using an online learning management system and completed peer reviews of their classmates’ posters using a rubric. This poster project met the learning objectives of our natural science, general education course and taught students important written, visual and verbal communication skills. Students were surveyed to determine, which parts of the course were most effective for instruction and learning. Students ranked poster assignments first, followed closely by lectures videos. Approximately 87% of students were confident that they could produce a scientific poster in the future and 80% of students recommended virtual poster symposiums for online courses.more » « less
-
This study investigates how faculty, student, and course features are linked to student outcomes in Learning Assistant (LA) supported courses. Over 4,500 students and 17 instructors from 13 LA Alliance member institutions participated in the study. Each participating student completed an online concept inventory at the start (pre) and end (post) of their term. The physics concept inventories included Force and Motion Concept Evaluation (FMCE) and the Brief Electricity and Magnetism Assessment (BEMA). Concepts inventories from the fields of biology and chemistry were also included. Our analyses utilize hierarchical linear models that nest student level data (e.g. pre/post scores and gender) within course level data (e.g. discipline and course enrollment) to build models that examine student outcomes across institutions and disciplines. We report findings on the connections between students' outcomes and their gender, race, and time spent working with LAs as well as instructors' experiences with LAs.more » « less
-
null (Ed.)The promotion of global sustainability within environmental science courses requires a paradigm switch from knowledge-based teaching to teaching that stimulates higher-order cognitive skills. Non-major undergraduate science courses, such as environmental science, promote critical thinking in students in order to improve the uptake of scientific information and develop the rational decision making used to make more informed decisions. Science, engineering, technology and mathematics (STEM) courses rely extensively on visuals in lectures, readings and homework to improve knowledge. However, undergraduate students do not automatically acquire visual literacy and a lack of intervention from instructors could be limiting academic success. In this study, a visual literacy intervention was developed and tested in the face-to-face (FTF) and online sections of an undergraduate non-major Introduction to Environmental Science course. The intervention was designed to test and improve visual literacy at three levels: (1) elementary—identifying values; (2) intermediate—identifying trends; and (3) advanced—using the data to make projections or conclusions. Students demonstrated a significant difference in their ability to answer elementary and advanced visual literacy questions in both course sections in the pre-test and post-test. Students in the face-to-face course had significantly higher exam scores and higher median assessment scores compared to sections without a visual literacy intervention. The online section did not show significant improvements in visual literacy or academic success due to a lack of reinforcement of visual literacy following the initial intervention. The visual literacy intervention shows promising results in improving student academic success and should be considered for implementation in other general education STEM courses.more » « less
An official website of the United States government

