skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A non-Archimedean approach to K-stability, II: Divisorial stability and openness
To any projective pair (X,B) equipped with an ample Q-line bundle L (or even any ample numerical class), we attach a new invariant $$\beta(\mu)$$, defined on convex combinations $$\mu$$ of divisorial valuations on X , viewed as point masses on the Berkovich analytification of X . The construction is based on non-Archimedean pluripotential theory, and extends the Dervan–Legendre invariant for a single valuation – itself specializing to Li and Fujita’s valuative invariant in the Fano case, which detects K-stability. Using our $$\beta$$-invariant, we define divisorial (semi)stability, and show that divisorial semistability implies (X,B) is sublc (i.e. its log discrepancy function is non-negative), and that divisorial stability is an open condition with respect to the polarization L. We also show that divisorial stability implies uniform K-stability in the usual sense of (ample) test configurations, and that it is equivalent to uniform K-stability with respect to all norms/filtrations on the section ring of (X,L), as considered by Chi Li.  more » « less
Award ID(s):
2154380 1900025 1600011
PAR ID:
10516582
Author(s) / Creator(s):
;
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Journal für die reine und angewandte Mathematik (Crelles Journal)
Volume:
805
Issue:
0
ISSN:
0075-4102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper studies the structure and stability of boundaries in noncollapsed $${{\,\mathrm{RCD}\,}}(K,N)$$ RCD ( K , N ) spaces, that is, metric-measure spaces $$(X,{\mathsf {d}},{\mathscr {H}}^N)$$ ( X , d , H N ) with Ricci curvature bounded below. Our main structural result is that the boundary $$\partial X$$ ∂ X is homeomorphic to a manifold away from a set of codimension 2, and is $$N-1$$ N - 1 rectifiable. Along the way, we show effective measure bounds on the boundary and its tubular neighborhoods. These results are new even for Gromov–Hausdorff limits $$(M_i^N,{\mathsf {d}}_{g_i},p_i) \rightarrow (X,{\mathsf {d}},p)$$ ( M i N , d g i , p i ) → ( X , d , p ) of smooth manifolds with boundary, and require new techniques beyond those needed to prove the analogous statements for the regular set, in particular when it comes to the manifold structure of the boundary $$\partial X$$ ∂ X . The key local result is an $$\varepsilon $$ ε -regularity theorem, which tells us that if a ball $$B_{2}(p)\subset X$$ B 2 ( p ) ⊂ X is sufficiently close to a half space $$B_{2}(0)\subset {\mathbb {R}}^N_+$$ B 2 ( 0 ) ⊂ R + N in the Gromov–Hausdorff sense, then $$B_1(p)$$ B 1 ( p ) is biHölder to an open set of $${\mathbb {R}}^N_+$$ R + N . In particular, $$\partial X$$ ∂ X is itself homeomorphic to $$B_1(0^{N-1})$$ B 1 ( 0 N - 1 ) near $$B_1(p)$$ B 1 ( p ) . Further, the boundary $$\partial X$$ ∂ X is $$N-1$$ N - 1 rectifiable and the boundary measure "Equation missing" is Ahlfors regular on $$B_1(p)$$ B 1 ( p ) with volume close to the Euclidean volume. Our second collection of results involve the stability of the boundary with respect to noncollapsed mGH convergence $$X_i\rightarrow X$$ X i → X . Specifically, we show a boundary volume convergence which tells us that the $$N-1$$ N - 1 Hausdorff measures on the boundaries converge "Equation missing" to the limit Hausdorff measure on $$\partial X$$ ∂ X . We will see that a consequence of this is that if the $$X_i$$ X i are boundary free then so is X . 
    more » « less
  2. Greenlees, John (Ed.)
    We study the question for which commutative ring spectra A the tensor of a simplicial set X with A, X ⊗ A, is a stable invariant in the sense that it depends only on the homotopy type of ΣX. We prove several structural properties about different notions of stability, corresponding to different levels of invariance required of X ⊗ A. We establish stability in important cases, such as complex and real periodic topological K-theory, KU and KO. 
    more » « less
  3. We show that for any even log-concave probability measure μ<#comment/> \mu on R n \mathbb {R}^n , any pair of symmetric convex sets K K and L L , and any λ<#comment/> ∈<#comment/> [ 0 , 1 ] \lambda \in [0,1] , μ<#comment/> ( ( 1 −<#comment/> λ<#comment/> ) K + λ<#comment/> L ) c n ≥<#comment/> ( 1 −<#comment/> λ<#comment/> ) μ<#comment/> ( K ) c n + λ<#comment/> μ<#comment/> ( L ) c n , \begin{equation*} \mu ((1-\lambda ) K+\lambda L)^{c_n}\geq (1-\lambda ) \mu (K)^{c_n}+\lambda \mu (L)^{c_n}, \end{equation*} where c n ≥<#comment/> n −<#comment/> 4 −<#comment/> o ( 1 ) c_n\geq n^{-4-o(1)} . This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333–5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139]). Moreover, our bound improves for various special classes of log-concave measures. 
    more » « less
  4. Abstract Hajnal and Szemerédi proved that if G is a finite graph with maximum degree $$\Delta $$ , then for every integer $$k \geq \Delta +1$$ , G has a proper colouring with k colours in which every two colour classes differ in size at most by $$1$$ ; such colourings are called equitable. We obtain an analogue of this result for infinite graphs in the Borel setting. Specifically, we show that if G is an aperiodic Borel graph of finite maximum degree $$\Delta $$ , then for each $$k \geq \Delta + 1$$ , G has a Borel proper k -colouring in which every two colour classes are related by an element of the Borel full semigroup of G . In particular, such colourings are equitable with respect to every G -invariant probability measure. We also establish a measurable version of a result of Kostochka and Nakprasit on equitable $$\Delta $$ -colourings of graphs with small average degree. Namely, we prove that if $$\Delta \geq 3$$ , G does not contain a clique on $$\Delta + 1$$ vertices and $$\mu $$ is an atomless G -invariant probability measure such that the average degree of G with respect to $$\mu $$ is at most $$\Delta /5$$ , then G has a $$\mu $$ -equitable $$\Delta $$ -colouring. As steps toward the proof of this result, we establish measurable and list-colouring extensions of a strengthening of Brooks’ theorem due to Kostochka and Nakprasit. 
    more » « less
  5. Abstract In this paper, we investigate an arithmetic analogue of the gonality of a smooth projective curve $$C$$ over a number field $$k$$: the minimal $$e$$ such that there are infinitely many points $$P \in C(\bar{k})$$ with $$[k(P):k] \leqslant e$$. Developing techniques that make use of an auxiliary smooth surface containing the curve, we show that this invariant can take any value subject to constraints imposed by the gonality. Building on work of Debarre–Klassen, we show that this invariant is equal to the gonality for all sufficiently ample curves on a surface $$S$$ with trivial irregularity. 
    more » « less