Abstract The glomerular filtration barrier (GFB) filters the blood to remove toxins while retaining high molecular weight proteins in the circulation. The glomerular basement membrane (GBM) and podocytes, highly specialized epithelial cells, are critical components of the filtration barrier. The GBM serves as a physical barrier to passage of molecules into the filtrate. Podocytes adhere to the filtrate side of the GBM and further restrict passage of high molecular weight molecules into the filtrate. Here, a 3D cell culture model of the glomerular filtration barrier to evaluate the role of the GBM and podocytes in mediating molecular diffusion is developed. GBM is isolated from mammalian kidneys to recapitulate the composition and mechanics of the in vivo basement membrane. The GFB model exhibits molecular selectivity that is comparable to the in vivo filtration barrier. The GBM alone provides a stringent barrier to passage of albumin and Ficoll. Podocytes further restrict molecular diffusion. Damage to the GBM that is typical of diabetic kidney disease is simulated using hypochlorous acid and results in increased molecular diffusion. This system can serve as a platform to evaluate the effects of GBM damage, podocyte injury, and reciprocal effects of altered podocyte–GBM interactions on kidney microvascular permeability. 
                        more » 
                        « less   
                    
                            
                            Transglutaminase-mediated stiffening of the glomerular basement membrane mitigates pressure-induced reductions in molecular sieving coefficient by reducing compression
                        
                    
    
            Proteinuria, the presence of high molecular weight proteins in the urine, is a primary indicator of chronic kidney disease. Proteinuria results from increased molecular permeability of the glomerular filtration barrier combined with saturation or defects in tubular protein reabsorption. Any solute that passes into the glomerular filtrate traverses the glomerular endothelium, the glomerular basement membrane, and the podocyte slit diaphragm. Damage to any layer of the filter has reciprocal effects on other layers to increase glomerular permeability. The GBM is thought to act as a compressible ultrafilter that has increased molecular selectivity with increased pressure due to compression that reduced the porosity of the GBM with increased pressure. In multiple forms of chronic kidney disease, crosslinking enzymes are upregulated and may act to increase GBM stiffness. Here we show that enzymatically crosslinking porcine GBM with transglutaminase increases the stiffness of the GBM and mitigates pressure-dependent reductions in molecular sieving coefficient. This was modeled mathematically using a modified membrane transport model accounting for GBM compression. Changes in the mechanical properties of the GBM may contribute to proteinuria through pressure-dependent effects on GBM porosity. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2216394
- PAR ID:
- 10516603
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Matrix Biology
- Volume:
- 130
- Issue:
- C
- ISSN:
- 0945-053X
- Page Range / eLocation ID:
- 47 to 55
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Albuminuria occurs when albumin leaks abnormally into the urine. Its mechanism remains unclear. A gel-compression hypothesis attributes the glomerular barrier to compression of the glomerular basement membrane (GBM) as a gel layer. Loss of podocyte foot processes would allow the gel layer to expand circumferentially, enlarge its pores and leak albumin into the urine. To test this hypothesis, we develop a poroelastic model of the GBM. It predicts GBM compression in healthy glomerulus and GBM expansion in the diseased state, essentially confirming the hypothesis. However, by itself, the gel compression and expansion mechanism fails to account for two features of albuminuria: the reduction in filtration flux and the thickening of the GBM. A second mechanism, the constriction of flow area at the slit diaphragm downstream of the GBM, must be included. The cooperation between the two mechanisms produces the amount of increase in GBM porosity expected in vivo in a mutant mouse model, and also captures the two in vivo features of reduced filtration flux and increased GBM thickness. Finally, the model supports the idea that in the healthy glomerulus, gel compression may help maintain a roughly constant filtration flux under varying filtration pressure.more » « less
- 
            Abstract The kidney tubule consists of a single layer of epithelial cells supported by the tubular basement membrane (TBM), a thin layer of specialized extracellular matrix (ECM). The mechanical properties of the ECM are important for regulating a wide range of cell functions including proliferation, differentiation and cell survival. Increased ECM stiffness plays a role in promoting multiple pathological conditions including cancer, fibrosis and heart disease. How changes in TBM mechanics regulate tubular epithelial cell behavior is not fully understood. Here we introduce a cell culture system that utilizes in vivo-derived TBM to investigate cell–matrix interactions in kidney proximal tubule cells. Basement membrane mechanics was controlled using genipin, a biocompatibility crosslinker. Genipin modification resulted in a dose-dependent increase in matrix stiffness. Crosslinking had a marginal but statistically significant impact on the diffusive molecular transport properties of the TBM, likely due to a reduction in pore size. Both native and genipin-modified TBM substrates supported tubular epithelial cell growth. Cells were able to attach and proliferate to form confluent monolayers. Tubular epithelial cells polarized and assembled organized cell–cell junctions. Genipin modification had minimal impact on cell viability and proliferation. Genipin stiffened TBM increased gene expression of pro-fibrotic cytokines and altered gene expression for N-cadherin, a proximal tubular epithelial specific cell–cell junction marker. This work introduces a new cell culture model for cell-basement membrane mechanobiology studies that utilizes in vivo-derived basement membrane. We also demonstrate that TBM stiffening affects tubular epithelial cell function through altered gene expression of cell-specific differentiation markers and induced increased expression of pro-fibrotic growth factors.more » « less
- 
            Not AvailaMineral imbalances in the body from chronic kidney disease can impact bone turnover and cause cortical bone loss. Synthetic salmon calcitonin is an FDA-approved treatment for bone fragility observed in diseases such as osteoporosis, and clinical trials have demonstrated a reduction in fractures compared to untreated individuals. This study documents the effects of calcitonin on cortical bone using an in vivo mouse model of chronic kidney disease. Serum BUN and PTH are reported. Calcitonin was found to impact at a dose of 50/IU/kg/day five times a week for five weeks. MicroCT was used to evaluate bone quantity measures, such as cortical porosity, thickness, bone area, and long bone structural geometric parameters. It was found that porosity, thickness, and bone geometry are affected by disease, but not by treatment at the specified regime. Small and wide-angle x-ray scattering (SAXS and WAXS) was used to obtain the nanostructure of the mineral-collagen-water composite, including mineral dimensions, -periodicity and collagen spacing. Data from thermogravimetric analysis (TgA) were used to quantify wt.% of the mineral, collagen, and bound water of each sample. Chronic kidney disease was found to decrease collagen spacing to increase mineral weight fractions, and to reduce loosely bound water. There were no changes from chronic kidney disease on the -Periodicity. Treatment increased the weight percent of collagen, with no effect on other bone quality parameters.more » « less
- 
            Despite chronic fibrosis occurring in many pathological conditions, few in vitro studies examine how fibrosis impacts lymphatic endothelial cell (LEC) behavior. This study examined stiffening profiles of PhotoCol®—commercially available methacrylated type I collagen—photo-crosslinked with the photoinitiators: Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), Irgacure 2959 (IRG), and Ruthenium/Sodium Persulfate (Ru/SPS) prior to evaluating PhotoCol® permeability and LEC response to PhotoCol® at stiffnesses representing normal and fibrotic tissues. Ru/SPS produced the highest stiffness (~6 kilopascal (kPa)) for photo-crosslinked PhotoCol®, but stiffness did not change with burst light exposures (30 and 90 s). The collagen fibril area fraction increased, and dextran permeability (40 kilodalton (kDa)) decreased with photo-crosslinking, showing the impact of photo-crosslinking on microstructure and molecular transport. Human dermal LECs on softer, uncrosslinked PhotoCol® (~0.5 kPa) appeared smaller with less prominent vascular endothelial (VE)-cadherin (cell–cell junction) expression compared to LECs on stiffer PhotoCol® (~6 kPa), which had increased cell size, border irregularity, and VE-cadherin thickness (junction zippering) that is consistent with LEC morphology in fibrotic tissues. Our quantitative morphological analysis demonstrates our ability to produce LECs with a fibrotic phenotype, and the overall study shows that PhotoCol® with Ru/SPS provides the necessary physical properties to systematically study LEC responses related to capillary growth and function under fibrotic conditions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    