skip to main content


This content will become publicly available on May 3, 2025

Title: Does environmental education work differently across sociopolitical contexts in the United States? Part II. Examining pedagogy in school field trip programs for early adolescent youth across political contexts
Award ID(s):
1906610
PAR ID:
10516611
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Routledge
Date Published:
Journal Name:
Environmental Education Research
Volume:
30
Issue:
5
ISSN:
1350-4622
Page Range / eLocation ID:
753 to 774
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. At birth, infants discriminate most of the sounds of the world’s languages, but by age 1, infants become language-specific listeners. This has generally been taken as evidence that infants have learned which acoustic dimensions are contrastive, or useful for distinguishing among the sounds of their language(s), and have begun focusing primarily on those dimensions when perceiving speech. However, speech is highly variable, with different sounds overlapping substantially in their acoustics, and after decades of research, we still do not know what aspects of the speech signal allow infants to differentiate contrastive from noncontrastive dimensions. Here we show that infants could learn which acoustic dimensions of their language are contrastive, despite the high acoustic variability. Our account is based on the cross-linguistic fact that even sounds that overlap in their acoustics differ in the contexts they occur in. We predict that this should leave a signal that infants can pick up on and show that acoustic distributions indeed vary more by context along contrastive dimensions compared with noncontrastive dimensions. By establishing this difference, we provide a potential answer to how infants learn about sound contrasts, a question whose answer in natural learning environments has remained elusive. 
    more » « less
  2. Manufactured parts are meticulously engineered to perform well with respect to several conflicting metrics, like weight, stress, and cost. The best achievable trade-offs reside on the Pareto front , which can be discovered via performance-driven optimization. The objectives that define this Pareto front often incorporate assumptions about the context in which a part will be used, including loading conditions, environmental influences, material properties, or regions that must be preserved to interface with a surrounding assembly. Existing multi-objective optimization tools are only equipped to study one context at a time, so engineers must run independent optimizations for each context of interest. However, engineered parts frequently appear in many contexts: wind turbines must perform well in many wind speeds, and a bracket might be optimized several times with its bolt-holes fixed in different locations on each run. In this paper, we formulate a framework for variable-context multi-objective optimization. We introduce the Pareto gamut , which captures Pareto fronts over a range of contexts. We develop a global/local optimization algorithm to discover the Pareto gamut directly, rather than discovering a single fixed-context "slice" at a time. To validate our method, we adapt existing multi-objective optimization benchmarks to contextual scenarios. We also demonstrate the practical utility of Pareto gamut exploration for several engineering design problems. 
    more » « less