Abstract For a subgraph$$G$$of the blow-up of a graph$$F$$, we let$$\delta ^*(G)$$be the smallest minimum degree over all of the bipartite subgraphs of$$G$$induced by pairs of parts that correspond to edges of$$F$$. Johansson proved that if$$G$$is a spanning subgraph of the blow-up of$$C_3$$with parts of size$$n$$and$$\delta ^*(G) \ge \frac{2}{3}n + \sqrt{n}$$, then$$G$$contains$$n$$vertex disjoint triangles, and presented the following conjecture of Häggkvist. If$$G$$is a spanning subgraph of the blow-up of$$C_k$$with parts of size$$n$$and$$\delta ^*(G) \ge \left(1 + \frac 1k\right)\frac n2 + 1$$, then$$G$$contains$$n$$vertex disjoint copies of$$C_k$$such that each$$C_k$$intersects each of the$$k$$parts exactly once. A similar conjecture was also made by Fischer and the case$$k=3$$was proved for large$$n$$by Magyar and Martin. In this paper, we prove the conjecture of Häggkvist asymptotically. We also pose a conjecture which generalises this result by allowing the minimum degree conditions in each bipartite subgraph induced by pairs of parts of$$G$$to vary. We support this new conjecture by proving the triangle case. This result generalises Johannson’s result asymptotically. 
                        more » 
                        « less   
                    
                            
                            The degree one Laguerre–Pólya class and the shuffle-word-embedding conjecture
                        
                    
    
            Abstract We discuss the class of functions, which are well approximated on compacta by the geometric mean of the eigenvalues of a unital (completely) positive map into a matrix algebra or more generally a type$$II_1$$factor, using the notion of a Fuglede–Kadison determinant. In two variables, the two classes are the same, but in three or more noncommuting variables, there are generally functions arising from type$$II_1$$von Neumann algebras, due to the recently established failure of the Connes embedding conjecture. The question of whether or not approximability holds for scalar inputs is shown to be equivalent to a restricted form of the Connes embedding conjecture, the so-called shuffle-word-embedding conjecture. 
        more » 
        « less   
        
    
                            - Award ID(s):
 - 2000037
 
- PAR ID:
 - 10516660
 
- Publisher / Repository:
 - Cambridge University Press
 
- Date Published:
 
- Journal Name:
 - Canadian Mathematical Bulletin
 
- ISSN:
 - 0008-4395
 
- Page Range / eLocation ID:
 - 1 to 8
 
- Format(s):
 - Medium: X
 
- Sponsoring Org:
 - National Science Foundation
 
More Like this
- 
            
 - 
            Abstract We give an explicit raising operator formula for the modified Macdonald polynomials$$\tilde {H}_{\mu }(X;q,t)$$, which follows from our recent formula for$$\nabla $$on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions$$\tilde {H}^{1,n}(X;q,t)$$that we call$$1,n$$-Macdonald polynomials, which reduce to a scalar multiple of$$\tilde {H}_{\mu }(X;q,t)$$when$$n=1$$. We conjecture that the coefficients of$$1,n$$-Macdonald polynomials in terms of Schur functions belong to$${\mathbb N}[q,t]$$, generalizing Macdonald positivity.more » « less
 - 
            Abstract We study higher uniformity properties of the Möbius function$$\mu $$, the von Mangoldt function$$\Lambda $$, and the divisor functions$$d_k$$on short intervals$$(X,X+H]$$with$$X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$$for a fixed constant$$0 \leq \theta < 1$$and any$$\varepsilon>0$$. More precisely, letting$$\Lambda ^\sharp $$and$$d_k^\sharp $$be suitable approximants of$$\Lambda $$and$$d_k$$and$$\mu ^\sharp = 0$$, we show for instance that, for any nilsequence$$F(g(n)\Gamma )$$, we have$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$ when$$\theta = 5/8$$and$$f \in \{\Lambda , \mu , d_k\}$$or$$\theta = 1/3$$and$$f = d_2$$. As a consequence, we show that the short interval Gowers norms$$\|f-f^\sharp \|_{U^s(X,X+H]}$$are also asymptotically small for any fixedsfor these choices of$$f,\theta $$. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in$$L^2$$. Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type$$II$$sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type$$I_2$$sums.more » « less
 - 
            Abstract For a subset$$A$$of an abelian group$$G$$, given its size$$|A|$$, its doubling$$\kappa =|A+A|/|A|$$, and a parameter$$s$$which is small compared to$$|A|$$, we study the size of the largest sumset$$A+A'$$that can be guaranteed for a subset$$A'$$of$$A$$of size at most$$s$$. We show that a subset$$A'\subseteq A$$of size at most$$s$$can be found so that$$|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$$. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling$$\kappa$$is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets$$A,B$$of$$\mathbb{F}_p$$of size at most$$\alpha p$$for an appropriate constant$$\alpha \gt 0$$, one only needs three elements$$b_1,b_2,b_3\in B$$to guarantee$$|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$$. Allowing the use of larger subsets$$A'$$, we show that for sets$$A$$of bounded doubling, one only needs a subset$$A'$$with$$o(|A|)$$elements to guarantee that$$A+A'=A+A$$. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.more » « less
 - 
            Abstract Let$${\mathbf {x}}_{n \times n}$$be an$$n \times n$$matrix of variables, and let$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]$$be the polynomial ring in these variables over a field$${\mathbb {F}}$$. We study the ideal$$I_n \subseteq {\mathbb {F}}[{\mathbf {x}}_{n \times n}]$$generated by all row and column variable sums and all products of two variables drawn from the same row or column. We show that the quotient$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$admits a standard monomial basis determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$is the generating function of permutations in$${\mathfrak {S}}_n$$by the length of their longest increasing subsequence. Along the way, we describe a ‘shadow junta’ basis of the vector space ofk-local permutation statistics. We also calculate the structure of$${\mathbb {F}}[{\mathbf {x}}_{n \times n}]/I_n$$as a graded$${\mathfrak {S}}_n \times {\mathfrak {S}}_n$$-module.more » « less
 
An official website of the United States government 
				
			
                                    