skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Female behavior drives the formation of distinct social structures in C57BL/6J versus wild-derived outbred mice in field enclosures
Abstract BackgroundSocial behavior and social organization have major influences on individual health and fitness. Yet, biomedical research focuses on studying a few genotypes under impoverished social conditions. Understanding how lab conditions have modified social organizations of model organisms, such as lab mice, relative to natural populations is a missing link between socioecology and biomedical science. ResultsUsing a common garden design, we describe the formation of social structure in the well-studied laboratory mouse strain, C57BL/6J, in replicated mixed-sex populations over 10-day trials compared to control trials with wild-derived outbred house mice in outdoor field enclosures. We focus on three key features of mouse social systems: (i) territory establishment in males, (ii) female social relationships, and (iii) the social networks formed by the populations. Male territorial behaviors were similar but muted in C57 compared to wild-derived mice. Female C57 sharply differed from wild-derived females, showing little social bias toward cage mates and exploring substantially more of the enclosures compared to all other groups. Female behavior consistently generated denser social networks in C57 than in wild-derived mice. ConclusionsC57 and wild-derived mice individually vary in their social and spatial behaviors which scale to shape overall social organization. The repeatable societies formed under field conditions highlights opportunities to experimentally study the interplay between society and individual biology using model organisms.  more » « less
Award ID(s):
2109636
PAR ID:
10516705
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
BMC
Date Published:
Journal Name:
BMC Biology
Volume:
22
Issue:
1
ISSN:
1741-7007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundRepetitive action, resistance to environmental change and fine motor disruptions are hallmarks of autism spectrum disorder (ASD) and other neurodevelopmental disorders, and vary considerably from individual to individual. In animal models, conventional behavioral phenotyping captures such fine-scale variations incompletely. Here we observed male and female C57BL/6J mice to methodically catalog adaptive movement over multiple days and examined two rodent models of developmental disorders against this dynamic baseline. We then investigated the behavioral consequences of a cerebellum-specific deletion in Tsc1 protein and a whole-brain knockout in Cntnap2 protein in mice. Both of these mutations are found in clinical conditions and have been associated with ASD. MethodsWe used advances in computer vision and deep learning, namely a generalized form of high-dimensional statistical analysis, to develop a framework for characterizing mouse movement on multiple timescales using a single popular behavioral assay, the open-field test. The pipeline takes virtual markers from pose estimation to find behavior clusters and generate wavelet signatures of behavior classes. We measured spatial and temporal habituation to a new environment across minutes and days, different types of self-grooming, locomotion and gait. ResultsBoth Cntnap2 knockouts and L7-Tsc1 mutants showed forelimb lag during gait. L7-Tsc1 mutants and Cntnap2 knockouts showed complex defects in multi-day adaptation, lacking the tendency of wild-type mice to spend progressively more time in corners of the arena. In L7-Tsc1 mutant mice, failure to adapt took the form of maintained ambling, turning and locomotion, and an overall decrease in grooming. However, adaptation in these traits was similar between wild-type mice and Cntnap2 knockouts. L7-Tsc1 mutant and Cntnap2 knockout mouse models showed different patterns of behavioral state occupancy. LimitationsGenetic risk factors for autism are numerous, and we tested only two. Our pipeline was only done under conditions of free behavior. Testing under task or social conditions would reveal more information about behavioral dynamics and variability. ConclusionsOur automated pipeline for deep phenotyping successfully captures model-specific deviations in adaptation and movement as well as differences in the detailed structure of behavioral dynamics. The reported deficits indicate that deep phenotyping constitutes a robust set of ASD symptoms that may be considered for implementation in clinical settings as quantitative diagnosis criteria. 
    more » « less
  2. Through human-aided dispersal over the last ~ 10,000 years, house mice (Mus musculus) have recently colonized diverse habitats across the globe, promoting the emergence of new traits that confer adaptive advantages in distinct environments. Despite their status as the premier mammalian model system, the impact of this demographic and selective history on the global patterning of disease-relevant trait variation in wild mouse populations is poorly understood. Here, we leveraged 154 whole-genome sequences from diverse wild house mouse populations to survey the geographic organization of functional variation and systematically identify signals of positive selection. We show that a significant proportion of wild mouse variation is private to single populations, including numerous predicted functional alleles. In addition, we report strong signals of positive selection at many genes associated with both complex and Mendelian diseases in humans. Notably, we detect a significant excess of selection signals at disease-associated genes relative to null expectations, pointing to the important role of adaptation in shaping the landscape of functional variation in wild mouse populations. We also uncover strong signals of selection at multiple genes involved in starch digestion, including Mgam and Amy1. We speculate that the successful emergence of the human-mouse commensalism may have been facilitated, in part, by dietary adaptations at these loci. Finally, our work uncovers multiple cryptic structural variants that manifest as putative signals of positive selection, highlighting an important and under-appreciated source of false-positive signals in genome-wide selection scans. Overall, our findings highlight the role of adaptation in shaping wild mouse genetic variation at human disease-associated genes. Our work also highlights the biomedical relevance of wild mouse genetic diversity and underscores the potential for targeted sampling of mice from specific populations as a strategy for developing effective new mouse models of both rare and common human diseases. 
    more » « less
  3. Abstract BackgroundSocial isolation is a key risk factor for the onset and progression of age-related disease and mortality in humans. Nevertheless, older people commonly have narrowing social networks, with influences from both cultural factors and the constraints of senescence. We evaluate evolutionarily grounded models by studying social aging in wild chimpanzees, a system where such influences are more easily separated than in humans, and where individuals are long-lived and decline physically with age. MethodologyWe applied social network analysis to examine age-related changes in social integration in a 7+ year mixed-longitudinal dataset on 38 wild adult chimpanzees (22 females, 16 males). Metrics of social integration included social attractivity and overt effort (directed degree and strength), social roles (betweenness and local transitivity) and embeddedness (eigenvector centrality) in grooming networks. ResultsBoth sexes reduced the strength of direct ties with age (males in-strength, females out-strength). However, males increased embeddedness with age, alongside cliquishness. These changes were independent of age-related changes in social and reproductive status. Both sexes maintained highly repeatable inter-individual differences in integration, particularly in mixed-sex networks. Conclusions and implicationsAs in humans, chimpanzees appear to experience senescence-related declines in social engagement. However, male social embeddedness and overall sex differences were patterned more similarly to humans in non-industrialized versus industrialized societies. Such comparisons suggest common evolutionary roots to ape social aging and that social isolation in older humans may hinge on novel cultural factors of many industrialized societies. Lastly, individual and sex differences are potentially important mediators of successful social aging in chimpanzees, as in humans.Lay summary: Few biological models explain why humans so commonly have narrowing social networks with age, despite the risk factor of social isolation that small networks pose. We use wild chimpanzees as a comparative system to evaluate models grounded in an evolutionary perspective, using social network analysis to examine changes in integration with age. Like humans in industrialized populations, chimpanzees had lower direct engagement with social partners as they aged. However, sex differences in integration and older males’ central positions within the community network were more like patterns of sociality in several non-industrialized human populations. Our results suggest common evolutionary roots to human and chimpanzee social aging, and that the risk of social isolation with age in industrialized populations stems from novel cultural factors. 
    more » « less
  4. Abstract Sex differences in running behaviors between female and male mice occur naturally in the wild. Recent experiments using head‐fixed mice on a voluntary running wheel have exploited analogous locomotor activity to gain insight into the neural underpinnings of a number of behaviors ranging from spatial navigation to decision‐making. It is however largely unknown if sex differences exist between females and males in a head‐fixed experimental paradigm. To address this, we characterized locomotor activity in head‐fixed female and male C57BL/6J mice on a voluntary running wheel. First, we found that over the initial 7‐day period, on average, animals increased both the velocity and the time spent running. Furthermore, we found that female mice habituated to running forward over the initial 2 days of encountering the wheel, while male mice took up to 4 days to habituate to running forward. Taken together, we characterized features of a sexually divergent behavior in head‐fixed running that should be considered in experiments employing female and male mice. 
    more » « less
  5. Abstract The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice andMus musculusNAc showed thatHcrtr2was more abundant thanHcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance. 
    more » « less