skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: The Cool Circumgalactic Medium of Low-redshift Star-forming Galaxies. I. Empirical Model and Mean Properties
Abstract

We present an analytic model for the cool,T∼ 104K, circumgalactic medium (CGM), describing the gas distribution, and thermal and ionization states. Our model assumes (total) pressure equilibrium with the ambient warm/hot CGM, photoionization by the metagalactic radiation, and allows for nonthermal pressure support, parameterized by the ratio of thermal pressures,η=Phot,th/Pcool,th. We apply the model to the COS-Halos measurements and find that a nominal model withη= 3, gas distribution out tor≈ 0.6Rvir, andMcool= 3 × 109M, corresponding to a volume filling fraction offV,cool≈ 1%, reproduces the Hiand low/intermediate metal ions (Cii, Ciii, Siii, Siiii, and Mgii) mean column densities. Variation of ±0.5 dex inηorMcoolencompasses ∼2/3 of the scatter between objects. Our nominal model underproduces the measured Civand Siivcolumns, and these can be reproduced with (i) a cool phase withMcool∼ 1010Mandη≈ 5, or (ii) cooling or mixing gas at intermediate temperatures, withM∼ 1.5 × 1010Mand occupying ∼1/2 of the total CGM volume. For cool gas withfV,cool≈ 1%, we estimate an upper limit on the cloud sizes,Rcl≲ 0.5 kpc. Our results suggest that for the average galaxy CGM, the mass and nonthermal support in the cool phase are lower than previously estimated, and extreme scenarios are not necessary. We estimate the rates of cool gas depletion and replenishment, and find accretion onto the galaxy can be offset, allowingṀcool0over long timescales.

 
more » « less
Award ID(s):
2044303
NSF-PAR ID:
10516760
Author(s) / Creator(s):
;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
956
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Lyαabsorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <zabs< 3.5, such that the secondary sightline probes absorption from Lyαand a large suite of metal-line transitions (including Oi, Cii, Civ, Siii, and Siiv) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R≤ 284 kpc. Analysis of Lyαin the CGM sightlines shows an anticorrelation betweenRand Hicolumn density (NHI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Ciiand SiiiwithN> 1013cm−2within 100 kpc of DLAs are larger by 2σthan those measured in the CGM of Lyman break galaxies (Cf(NCII) > 0.89 andCf(NSiII)=0.750.17+0.12). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andNHI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range2.06logZ/Z0.75), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civλ1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ) correlated, suggesting that they trace the potential well of the host halo overR≲ 300 kpc scales. At the same time, velocity centroids for Civλ1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M.

     
    more » « less
  2. Abstract

    We presentCloudFlex, an open-source tool for predicting absorption-line signatures of cool gas in galaxy halos with small-scale structure. Motivated by analyses of ∼104K material in hydrodynamical simulations of turbulent, multiphase media, we model cool gas structures as complexes of cloudlets sampled from a power-law distribution of massmclαwith velocities drawn from a turbulent velocity field. The user may specifyα, the lower limit of the cloudlet mass distribution (mcl,min), and several other parameters that set the mass, size, and velocity distribution of the complex. This permits investigation of the relation between these parameters and absorption-line observables. As a proof-of-concept, we calculate the Mgiiλ2796 absorption induced by the cloudlets in background quasi-stellar object (QSO) spectra. We demonstrate that, at fixed metallicity, the covering fraction of sight lines with equivalent widthsW2796< 0.3 Å increases significantly with decreasingmcl,min, cloudlet number density (ncl), and complex size. We then use this framework to predict the halo-scaleW2796distribution around ∼L*galaxies. We show that the observed incidences ofW2796> 0.3 Å sight lines with impact parameters 10 kpc <R< 50 kpc in projected QSO–galaxy studies are consistent with our model over much of parameter space. However, they are underpredicted by models withmcl,min100Mandncl≥ 0.03 cm−3, in keeping with a picture in which the inner cool circumgalactic medium (CGM) is dominated by numerous low-mass cloudlets (mcl≲ 100M) with a volume filling factor ≲1%. When used to model absorption-line data sets built from multi-sight line and/or spatially extended background probes,CloudFlexenables detailed constraints on the size and velocity distributions of structures comprising the photoionized CGM.

     
    more » « less
  3. Abstract

    The Large Magellanic Cloud (LMC) is home to many Hiiregions, which may lead to significant outflows. We examine the LMC’s multiphase gas (T∼104-5K) in Hi, Sii, Siiv, and Civusing 110 stellar sight lines from the Hubble Space Telescope’s Ultraviolet Legacy Library of Young Stars as Essential Standards program. We develop a continuum fitting algorithm based on the concept of Gaussian process regression and identify reliable LMC interstellar absorption overvhelio= 175–375 km s−1. Our analyses show disk-wide ionized outflows in Siivand Civacross the LMC with bulk velocities of ∣vout, bulk∣ ∼ 20–60 km s−1, which indicates that most of the outflowing mass is gravitationally bound. The outflows’ column densities correlate with the LMC’s star formation rate surface densities (ΣSFR), and the outflows with higher ΣSFRtend to be more ionized. Considering outflows from both sides of the LMC as traced by Civ, we conservatively estimate a total outflow rate ofṀout0.03Myr1and a mass-loading factor ofη≳ 0.15. We compare the LMC’s outflows with those detected in starburst galaxies and simulation predictions, and find a universal scaling relation ofvout,bulkΣSFR0.23over a wide range of star-forming conditions (ΣSFR∼ 10−4.5–102Myr−1kpc−2). Lastly, we find that the outflows are corotating with the LMC’s young stellar disk and the velocity field does not seem to be significantly impacted by external forces; we thus speculate on the existence of a bow shock leading the LMC, which may have shielded the outflows from ram pressure as the LMC orbits the Milky Way.

     
    more » « less
  4. Abstract

    State transitions in black hole X-ray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a height-integrated version of this process, which is suitable for analytical and numerical studies. With radiusrscaled to Schwarzschild units and coronal mass accretion rateṁcto Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in X-ray binaries and an active galactic nucleus. The corona solution consists of two power-law segments separated at a break radiusrb∼ 103(α/0.3)−2, whereαis the viscosity parameter. Gas evaporates from the disk to the corona forr>rb, and condenses back forr<rb. Atrb,ṁcreaches its maximum,ṁc,max0.02(α/0.3)3. If atrrbthe thin disk accretes withṁd<ṁc,max, then the disk evaporates fully before reachingrb, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andrbremains unchanged. This model predicts strong coronal winds forr>rb, and aT∼ 5 × 108K Compton-cooled corona forr<rb. Two-temperature effects are ignored, but may be important at small radii.

     
    more » « less
  5. Abstract

    The circumgalactic medium (CGM) plays a vital role in the formation and evolution of galaxies, acting as a lifeline between galaxies and the surrounding intergalactic medium. In this study, we leverage a unique sample of quasar pairs to investigate the properties of the CGM with absorption line tomography. We present a new sample of medium-resolution Keck/ESI, Magellan/MagE, and VLT/XSHOOTER spectra of 29 quasar pairs at redshift 2 <z< 3. We supplement the sample with additional spectra of 32 pairs from the literature, creating a catalog of 61 quasar pairs with angular separations between 1.″7 and 132.″9 and projected physical separations (r) between 14 kpc and 887 kpc. We construct a catalog of 906 metal-line absorption doublets of Civ(λλ1548, 1550) with equivalent widths ranging from 6 m Å ≤Wr,1550≤ 2053 m Å. The best-fit linear model to the log-space equivalent width frequency distribution (logf(Wr)=mlog(Wr)+b) of the sample yields coefficients ofm= −1.44 ± 0.16 andb= −0.43 ± 0.16. To constrain the projected extent of Civ, we calculate the transverse autocorrelation function. The flattening of the autocorrelation function at lowrprovides a lower limit for the coherence length of the metal enriched CGM—on the order of 200h−1comoving kpc. This physical size constraint allows us to refine our understanding of the metals in the CGM, where the extent of Civin the CGM depends on gas flows, feedback, timescale of metal injection and mixing, and the mass of the host galaxies.

     
    more » « less