skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solid‐state NMR for the analysis of interface excesses in Li‐doped MgAl 2 O 4 nanocrystals
Interface segregation plays a governing role in nanocrystalline ceramics properties due to the relative increase in the interfacial volume fraction. However, due to the complexity of the detection and quantification of interfacial excesses at the nanoscale, the role of ionic dopants or additives on microstructural evolution and thermodynamics can be easily underestimated. In this work, we address the spatial distribution of Li+as a dopant in magnesium aluminate spinel nanoparticles. This is achieved through a novel method for the detection and quantification of Li+across the surface, grain boundary, and bulk (crystal lattice). Based on selective lixiviation combined with chemical analysis, we were able to quantify the amount of Li+forming surface excess, whereas the quantitative solid‐state nuclear magnetic resonance technique enabled the quantification of Li+segregated in the grain boundaries and dissolved in the lattice. This comprehensive understanding of the Li+distribution across the nanoparticles makes possible an unprecedented interpretation of coarsening and sintering, with a clear correlation between the microstructure and the Li+distribution. Although the work focuses on MgAl2O4, the proposed combination of techniques is expected to have a positive impact on the understanding of other multicomponent nanoscale systems.  more » « less
Award ID(s):
2015650 2414106
PAR ID:
10516784
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
107
Issue:
2
ISSN:
0002-7820
Page Range / eLocation ID:
1334 to 1347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Polyanion rotations are often linked to cation diffusion, but the study of multiple polyanion systems is scarce due to the complexities in experimentally determining their dynamic interactions. This work focuses on BH4‐based argyrodites, synthesized to achieve a high conductivity of 11 mS cm−1. Advanced tools, including high‐resolution X‐ray diffraction, neutron pair distribution function analysis, and mutinuclear magic‐angle‐spinning nuclear magnetic resonance (NMR) spectroscopy and relaxometry, along with theoretical calculations, are employed to unravel the dynamic intricacies among the dual polyanion lattice and active charge carriers. The findings reveal that the anion sublattice of Li5.07PS4.07(BH4)1.93affords an even temporal distribution of Li among PS43−and BH4, suggesting minimal trapping of the charge carriers. Moreover, the NMR relaxometry unveils rapid BH4rotation on the order of ∼GHz, affecting the slower rotation of neighboring PS43−at ∼100 MHz. The PS43−rotation synchronizes with Li+motion and drives superionic transport. Thus, the PS43−and BH4polyanions act as two‐staged dual motors, facilitating rapid Li+diffusion. 
    more » « less
  2. Abstract To enhance Li+transport in all‐solid‐state batteries (ASSBs), harnessing localized nanoscale disorder can be instrumental, especially in sulfide‐based solid electrolytes (SEs). In this investigation, the transformation of the model SE, Li3PS4, is delved into via the introduction of LiBr.31P nuclear magnetic resonance (NMR)unveils the emergence of a glassy PS43−network interspersed with Br.6Li NMR corroborates swift Li+migration between PS43−and Br, with increased Li+mobility indicated by NMR relaxation measurements. A more than fourfold enhancement in ionic conductivity is observed upon LiBr incorporation into Li3PS4. Moreover, a notable decrease in activation energy underscores the pivotal role of Brincorporation within the anionic lattice, effectively reducing the energy barrier for ion conduction and transitioning Li+transport dimensionality from 2D to 3D. The compatibility of Li3PS4with Li metal is improved through LiBr incorporation, alongside an increase in critical current density from 0.34 to 0.50 mA cm−2, while preserving the electrochemical stability window. ASSBs with 3Li3PS4:LiBr as the SE  showcase robust high‐rate and long‐term cycling performance. These findings collectively indicate the potential of lithium halide incorporation as a promising avenue to enhance the ionic conductivity and stability of SEs. 
    more » « less
  3. Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics. 
    more » « less
  4. Abstract Oxide solid electrolytes (OSEs) have the potential to achieve improved safety and energy density for lithium-ion batteries, but their high grain-boundary (GB) resistance generally is a bottleneck. In the well-studied perovskite oxide solid electrolyte, Li3xLa2/3-xTiO3(LLTO), the ionic conductivity of grain boundaries is about three orders of magnitude lower than that of the bulk. In contrast, the related Li0.375Sr0.4375Ta0.75Zr0.25O3(LSTZ0.75) perovskite exhibits low grain boundary resistance for reasons yet unknown. Here, we use aberration-corrected scanning transmission electron microscopy and spectroscopy, along with an active learning moment tensor potential, to reveal the atomic scale structure and composition of LSTZ0.75 grain boundaries. Vibrational electron energy loss spectroscopy is applied for the first time to reveal atomically resolved vibrations at grain boundaries of LSTZ0.75 and to characterize the otherwise unmeasurable Li distribution therein. We find that Li depletion, which is a major reason for the low grain boundary ionic conductivity of LLTO, is absent for the grain boundaries of LSTZ0.75. Instead, the low grain boundary resistivity of LSTZ0.75 is attributed to the formation of a nanoscale defective cubic perovskite interfacial structure that contained abundant vacancies. Our study provides new insights into the atomic scale mechanisms of low grain boundary resistivity. 
    more » « less
  5. Abstract The interface between cathode and electrolyte is a significant source of large interfacial resistance in solid‐state batteries (SSBs). Spark plasma sintering (SPS) allows densifying electrolyte and electrodes in one step, which can improve the interfacial contact in SSBs and significantly shorten the processing time. In this work, we proposed a two‐step joining process to prepare cathode (LiCoO2, LCO)/electrolyte (Li0.33La0.57TiO3, LLTO) half cells via SPS. Interdiffusion between Ti4+/Co3+was observed at the interface by SEM/STEM, resulting in the formation of the Li−Ti−La−Co−O and Li−Ti−Co−O phases in LLTO and the Li−Co−Ti−O phase in LCO. Computational modeling was performed to verify that the Li−Ti−Co−O phase has a LiTi2O4host lattice. In a study of interfacial electrical properties, the resistance of this interdiffusion layer was found to be 105 Ω, which is 40 times higher than the resistance of the individual LLTO phase. The formation of an interdiffusion layer is identified as the origin of the high interface resistance in the LLTO/LCO half‐cell. 
    more » « less