A<sc>bstract</sc> The charge-parity (CP) structure of the Yukawa interaction between the Higgs (H) boson and the top quark is measured in a data sample enriched in the t$$ \overline{\textrm{t}} $$ H and tH associated production, using 138 fb−1of data collected in proton-proton collisions at$$ \sqrt{s} $$ = 13 TeV by the CMS experiment at the CERN LHC. The study targets events where the H boson decays via H → WW or H →ττand the top quarks decay via t → Wb: the W bosons decay either leptonically or hadronically, and final states characterized by the presence of at least two leptons are studied. Machine learning techniques are applied to these final states to enhance the separation ofCP-even fromCP-odd scenarios. Two-dimensional confidence regions are set onκtand$$ \overset{\sim }{\kappa } $$ t, which are respectively defined as theCP-even andCP-odd top-Higgs Yukawa coupling modifiers. No significant fractionalCP-odd contributions, parameterized by the quantity|$$ {f}_{CP}^{\textrm{Htt}} $$ |are observed; the parameter is determined to be|$$ {f}_{CP}^{\textrm{Htt}} $$ |= 0.59 with an interval of (0.24,0.81) at 68% confidence level. The results are combined with previous results covering the H→ZZ and H→ γγdecay modes, yielding two- and one-dimensional confidence regions onκtand$$ \overset{\sim }{\kappa } $$ t, while|$$ {f}_{CP}^{\textrm{Htt}} $$ |is determined to be|$$ {f}_{CP}^{\textrm{Htt}} $$ |= 0.28 with an interval of|$$ {f}_{CP}^{\textrm{Htt}} $$ | <0.55 at 68% confidence level, in agreement with the standard modelCP-even prediction of|$$ {f}_{CP}^{\textrm{Htt}} $$ |= 0.
more »
« less
Self-dual black holes in celestial holography
We construct two-dimensional quantum states associated to four-dimensional linearized rotating self-dual black holes in (2, 2) signature Klein space. The states are comprised of global conformal primaries circulating on the celestial torus, the Kleinian analog of the celestial sphere. By introducing a generalized tower of Goldstone operators we identify the states as coherent exponentiations carrying an infinite tower of w1+∞charges or soft hair. We relate our results to recent approaches to black hole scattering, including a connection to Wilson lines,$$ \mathcal{S} $$ -matrix results, and celestial holography in curved backgrounds.
more »
« less
- Award ID(s):
- 2207659
- PAR ID:
- 10516855
- Publisher / Repository:
- International School for Advanced Studies; Springer Nature
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2023
- Issue:
- 9
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A<sc>bstract</sc> In the standard$$ \mathcal{N} $$ = (4, 4) AdS3/CFT2with symN(T4), as well as the$$ \mathcal{N} $$ = (2, 2) Datta-Eberhardt-Gaberdiel variant with symN(T4/ℤ2), supersymmetric index techniques have not been applied so far to the CFT states with target-space momentum or winding. We clarify that the difficulty lies in a central extension of the SUSY algebra in the momentum and winding sectors, analogous to the central extension on the Coulomb branch of 4d$$ \mathcal{N} $$ = 2 gauge theories. We define modified helicity-trace indices tailored to the momentum and winding sectors, and use them for microstate counting of the corresponding bulk black holes. In the$$ \mathcal{N} $$ = (4, 4) case we reproduce the microstate matching of Larsen and Martinec. In the$$ \mathcal{N} $$ = (2, 2) case we resolve a previous mismatch with the Bekenstein-Hawking formula encountered in the topologically trivial sector by going to certain winding sectors.more » « less
-
A<sc>bstract</sc> We report results from a study ofB±→ DK±decays followed byDdecaying to theCP-even final stateK+K−and CP-odd final state$$ {K}_S^0{\pi}^0 $$ , whereDis an admixture ofD0and$$ {\overline{D}}^0 $$ states. These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity-triangle angleϕ3. The results are based on a combined analysis of the final data set of 772×106$$ B\overline{B} $$ pairs collected by the Belle experiment and a data set of 198×106$$ B\overline{B} $$ pairs collected by the Belle II experiment, both in electron-positron collisions at the Υ(4S) resonance. We measure the CP asymmetries to be$$ \mathcal{A} $$ CP+= (+12.5±5.8±1.4)% and$$ \mathcal{A} $$ CP−= (−16.7±5.7±0.6)%, and the ratios of branching fractions to be$$ \mathcal{R} $$ CP+= 1.164±0.081±0.036 and$$ \mathcal{R} $$ CP−= 1.151±0.074±0.019. The first contribution to the uncertainties is statistical, and the second is systematic. The asymmetries$$ \mathcal{A} $$ CP+and$$ \mathcal{A} $$ CP−have similar magnitudes and opposite signs; their difference corresponds to 3.5 standard deviations. From these values we calculate 68.3% confidence intervals of (8.5°<ϕ3< 16.5°) or (84.5°<ϕ3< 95.5°) or (163.3°<ϕ3< 171.5°) and 0.321 <rB< 0.465.more » « less
-
A<sc>bstract</sc> The entanglement negativity$$ \mathcal{E} $$ (A:B) is a useful measure of quantum entanglement in bipartite mixed states. In random tensor networks (RTNs), which are related to fixed-area states, it was found in ref. [1] that the dominant saddles computing the even Rényi negativity$$ {\mathcal{E}}^{(2k)} $$ generically break theℤ2kreplica symmetry. This calls into question previous calculations of holographic negativity using 2D CFT techniques that assumedℤ2kreplica symmetry and proposed that the negativity was related to the entanglement wedge cross section. In this paper, we resolve this issue by showing that in general holographic states, the saddles computing$$ {\mathcal{E}}^{(2k)} $$ indeed break theℤ2kreplica symmetry. Our argument involves an identity relating$$ {\mathcal{E}}^{(2k)} $$ to thek-th Rényi entropy on subregionAB∗in the doubled state$$ {\left.|{\rho}_{AB}\right\rangle}_{A{A}^{\ast }{BB}^{\ast }} $$ , from which we see that theℤ2kreplica symmetry is broken down toℤk. Fork< 1, which includes the case of$$ \mathcal{E} $$ (A:B) atk= 1/2, we use a modified cosmic brane proposal to derive a new holographic prescription for$$ {\mathcal{E}}^{(2k)} $$ and show that it is given by a new saddle with multiple cosmic branes anchored to subregionsAandBin the original state. Using our prescription, we reproduce known results for the PSSY model and show that our saddle dominates over previously proposed CFT calculations neark= 1. Moreover, we argue that theℤ2ksymmetric configurations previously proposed are not gravitational saddles, unlike our proposal. Finally, we contrast holographic calculations with those arising from RTNs with non-maximally entangled links, demonstrating that the qualitative form of backreaction in such RTNs is different from that in gravity.more » « less
-
A<sc>bstract</sc> Euclidean path integrals for UV-completions ofd-dimensional bulk quantum gravity were recently studied in [1] by assuming that they satisfy axioms of finiteness, reality, continuity, reflection-positivity, and factorization. Sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ of the resulting Hilbert space were then defined for any (d− 2)-dimensional surface$$ \mathcal{B} $$ , where$$ \mathcal{B} $$ may be thought of as the boundary ∂Σ of a bulk Cauchy surface in a corresponding Lorentzian description, and where$$ \mathcal{B} $$ includes the specification of appropriate boundary conditions for bulk fields. Cases where$$ \mathcal{B} $$ was the disjoint unionB⊔Bof two identical (d− 2)-dimensional surfacesBwere studied in detail and, after the inclusion of finite-dimensional ‘hidden sectors,’ were shown to provide a Hilbert space interpretation of the associated Ryu-Takayanagi entropy. The analysis was performed by constructing type-I von Neumann algebras$$ {\mathcal{A}}_L^B $$ ,$$ {\mathcal{A}}_R^B $$ that act respectively at the left and right copy ofBinB⊔B. Below, we consider the case of general$$ \mathcal{B} $$ , and in particular for$$ \mathcal{B} $$ =BL⊔BRwithBL,BRdistinct. For anyBR, we find that the von Neumann algebra atBLacting on the off-diagonal Hilbert space sector$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ is a central projection of the corresponding type-I von Neumann algebra on the ‘diagonal’ Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ . As a result, the von Neumann algebras$$ {\mathcal{A}}_L^{B_L} $$ ,$$ {\mathcal{A}}_R^{B_L} $$ defined in [1] using the diagonal Hilbert space$$ {\mathcal{H}}_{B_L\bigsqcup {B}_L} $$ turn out to coincide precisely with the analogous algebras defined using the full Hilbert space of the theory (including all sectors$$ {\mathcal{H}}_{\mathcal{B}} $$ ). A second implication is that, for any$$ {\mathcal{H}}_{B_L\bigsqcup {B}_R} $$ , including the same hidden sectors as in the diagonal case again provides a Hilbert space interpretation of the Ryu-Takayanagi entropy. We also show the above central projections to satisfy consistency conditions that lead to a universal central algebra relevant to all choices ofBLandBR.more » « less
An official website of the United States government

