skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Geographic variation in growth and reproduction trade‐offs: Implications for future tree performance
Abstract Forests play a crucial role providing ecosystem services to humans, yet many aspects of forest dynamics remain unknown. One key area is how climate change might impact reproduction of tree species. While most studies have focused on predicting tree growth, understanding how reproduction may change will be vital to forecasting future forest communities. Of particular interest is the relationship between annual growth and reproductive output, which has often been hypothesized as a trade‐off between allocating resources to growth or to reproduction. Two proposed pathways of this trade‐off, resource accumulation, that is, storage of resources over time, and resource allocation, that is, same year allocation of resources to reproduction, have been widely explored in relation to masting events. It has also been proposed that there is no internal trade‐off between the two functions, but rather there exists one or more climate variables that are intrinsically linked to both, that is, the weather hypothesis. In this study, we use 15 years of dendrochronological data and seed rain collections from forest stands at two latitudes to determine whether one or more of these strategies are taking place in two commonly occurring tree species: red maple,Acer rubrum; and sugar maple,Acer saccharum. We found evidence of a trade‐off in both species. We also found a combination of strategies was the norm, and there appeared to be evidence to also support the weather hypothesis. However, in both species, the strategy which dictated the trade‐off switched between the northern and southern regions, indicating a degree of plasticity that could be beneficial under changing environmental conditions. By identifying the ways in which growth and reproduction are connected and how these connections vary between different populations, we can gain insights into how trees allocate resources in response to changing conditions.  more » « less
Award ID(s):
2041933
PAR ID:
10517031
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
15
Issue:
6
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Organisms of all species must balance their allocation to growth, survival and recruitment. Among tree species, evolution has resulted in different life‐history strategies for partitioning resources to these key demographic processes. Life‐history strategies in tropical forests have often been shown to align along a trade‐off between fast growth and high survival, that is, the well‐known fast–slow continuum. In addition, an orthogonal trade‐off has been proposed between tall stature—resulting from fast growth and high survival—and recruitment success, that is, a stature−recruitment trade‐off. However, it is not clear whether these two independent dimensions of life‐history variation structure tropical forests worldwide.We used data from 13 large‐scale and long‐term tropical forest monitoring plots in three continents to explore the principal trade‐offs in annual growth, survival and recruitment as well as tree stature. These forests included relatively undisturbed forests as well as typhoon‐disturbed forests. Life‐history variation in 12 forests was structured by two orthogonal trade‐offs, the growth−survival trade‐off and the stature−recruitment trade‐off. Pairwise Procrustes analysis revealed a high similarity of demographic relationships among forests. The small deviations were related to differences between African and Asian plots.Synthesis. The fast–slow continuum and tree stature are two independent dimensions structuring many, but not all tropical tree communities. Our discovery of the consistency of demographic trade‐offs and life‐history strategies across different forest types from three continents substantially improves our ability to predict tropical forest dynamics worldwide. 
    more » « less
  2. The interspecific trade‐off between growth versus mortality rates of tree species is thought to be driven by functional biology and to contribute to species ecological niche differentiation. Yet, functional trait variation is often not strongly correlated with growth and mortality, and few studies have investigated the relationships of both traits and niches, specifically encompassing above and belowground resources, to the trade‐off itself. These relationships are particularly relevant for seedlings, which must often survive resource limitation to reach larger size classes.We investigated the functional basis of the interspecific growth–mortality trade‐off and its relationship with ecological niches for seedlings of 14 tree species in a tropical forest in southwest China.We found evidence for an interspecific growth–mortality trade‐off at the seedling stage using 15 functional traits and 15 ecological niche variables. None of the organ‐level traits correlated with growth, mortality, nor the trade‐off, whereas specific stem length (SSL), a biomass allocation trait, was the only trait to have a significant correlation (positive). Moreover, light‐defined niches were not correlated with growth, mortality or the trade‐off, but soil‐defined niches did. Species at the faster growth/higher mortality end of the trade‐off were associated with higher fertility defined by lower soil bulk density and slope, and higher soil organic matter concentration and soil total nitrogen.Our findings indicate the importance of stem elongation and soil fertility for growth, mortality and their trade‐off at the seedling stage in this Asian tropical forest. Our findings contrast with analogous studies in neotropical forests showing the importance of photosynthesis‐related leaf traits related to insolation. Therefore, the functional drivers of demographic rates and trade‐offs, as well as their consequences for ecological niches, can vary among forests, likely owing to differences in biogeography, canopy disturbance rates, topography and soil properties. Moreover, the effects of functional trait variation on demographic rates and trade‐offs may be better revealed when biomass allocation is accounted for in a whole‐plant context. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  3. Abstract All species must partition resources among the processes that underly growth, survival, and reproduction. The resulting demographic trade‐offs constrain the range of viable life‐history strategies and are hypothesized to promote local coexistence. Tropical forests pose ideal systems to study demographic trade‐offs as they have a high diversity of coexisting tree species whose life‐history strategies tend to align along two orthogonal axes of variation: a growth–survival trade‐off that separates species with fast growth from species with high survival and a stature–recruitment trade‐off that separates species that achieve large stature from species with high recruitment. As these trade‐offs have typically been explored for trees ≥1 cm dbh, it is unclear how species' growth and survival during earliest seedling stages are related to the trade‐offs for trees ≥1 cm dbh. Here, we used principal components and correlation analyses to (1) determine the main demographic trade‐offs among seed‐to‐seedling transition rates and growth and survival rates from the seedling to overstory size classes of 1188 tree species from large‐scale forest dynamics plots in Panama, Puerto Rico, Ecuador, Taiwan, and Malaysia and (2) quantify the predictive power of maximum dbh, wood density, seed mass, and specific leaf area for species' position along these demographic trade‐off gradients. In four out of five forests, the growth–survival trade‐off was the most important demographic trade‐off and encompassed growth and survival of both seedlings and trees ≥1 cm dbh. The second most important trade‐off separated species with relatively fast growth and high survival at the seedling stage from species with relatively fast growth and high survival ≥1 cm dbh. The relationship between seed‐to‐seedling transition rates and these two trade‐off aces differed between sites. All four traits were significant predictors for species' position along the two trade‐off gradients, albeit with varying importance. We concluded that, after accounting for the species' position along the growth–survival trade‐off, tree species tend to trade off growth and survival at the seedling with later life stages. This ontogenetic trade‐off offers a mechanistic explanation for the stature–recruitment trade‐off that constitutes an additional ontogenetic dimension of life‐history variation in species‐rich ecosystems. 
    more » « less
  4. Abstract Plants allocate biomass to different organs in response to resource variation for maximizing performance, yet we lack a framework that adequately integrates plant responses to the simultaneous variation in above‐ and below‐ground resources. Although traditionally, the optimal partition theory (OPT) has explained patterns of biomass allocation in response to a single limiting resource, it is well‐known that in natural communities multiple resources limit growth. We study trade‐offs involved in plant biomass allocation patterns and their effects on plant growth under variable below‐ and above‐ground resources—light, soil N and P—for seedling communities.We collected information on leaf, stem and root mass fractions for more than 1,900 seedlings of 97 species paired with growth data and local‐scale variation in abiotic resources from a tropical forest in China.We identified two trade‐off axes that define the mass allocation strategies for seedlings—allocation to photosynthetic versus non‐photosynthetic tissues and allocation to roots over stems—that responded to the variation in soil P and N and light. Yet, the allocation patterns did not always follow predictions of OPT in which plants should allocate biomass to the organ that acquires the most limiting resource. Limited soil N resulted in high allocation to leaves at the expense of non‐photosynthetic tissues, while the opposite trend was found in response to limited soil P. Also, co‐limitation in above‐ and below‐ground resources (light and soil P) led to mass allocation to stems at the expense of roots. Finally, we found that growth increased under high‐light availability and soil P for seedlings that invested more in photosynthetic over non‐photosynthetic tissues or/and that allocated mass to roots at the expense of stem.Synthesis. Biomass allocation patterns to above‐ and below‐ground tissues are described by two independent trade‐offs that allow plants to have divergent allocation strategies (e.g. high root allocation at the expense of stem or high leaf allocation at the expense of allocation to non‐photosynthetic tissues) and enhance growth under different limiting resources. Identifying the trade‐offs driving biomass allocation is important to disentangle plant responses to the simultaneous variation in resources in diverse forest communities. 
    more » « less
  5. ABSTRACT Leaves are critical to plant photosynthesis and the loss of leaf area can have negative consequences for an individual's performance and fitness. Variation in plant defenses plays a large role in protecting their leaves from attack by insect herbivores. However, trade‐offs in allocation among growth, reproduction, and defense may limit the availability of resources for any one aspect of a plant's life‐history strategy, which would lead to greater herbivory in those plants that allocate more resources to growth or reproduction than to defense. Patterns of sex‐biased herbivory in dioecious plants are well documented yet are known to vary in the direction (female or male) of their bias. A greater concentration of conspecifics may also increase herbivore attack through negative density dependence. In order to test the hypothesis that sex‐biased herbivory varies as a function of conspecific density, we measured standing herbivory on 2350 leaves on 302 trees of the dioecious understory treeIryanthera hostmannii(Myristicaceae) situated in a large forest dynamics plot in a lowland tropical rain forest in Ecuador. We found no difference in standing herbivory between the 169 male and 133 female trees, nor for focal trees surrounded by higher densities of conspecifics. The slow‐growing, shade‐tolerant growth patterns ofI. hostmanniimay contribute to suppressed differential expression of secondary sex characters in leaf defenses, leading to similar levels of herbivory between males and females. Considering the factors that most strongly affect herbivory in dioecious species is important in understanding the evolution of sex‐related traits more broadly. 
    more » « less