skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Descriptive Analysis of Transient-State Observations for Thioredoxin/Glutathione Reductase (Sec597Cys) from Schistosoma mansoni
Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both oxidized thioredoxin and glutathione with electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH). SmTGR is a drug target for the treatment of Schistosomiasis, an infection caused by Schistosoma platyhelminths residing in the blood vessels of the host. Schistosoma spp. are reliant on TGR enzymes as they lack catalase and so use reduced thioredoxin and glutathione to regenerate peroxiredoxins consumed in the detoxification of reactive oxygen species. SmTGR is a flavin adenine dinucleotide (FAD)-dependent enzyme, and we have used the flavin as a spectrophotometric reporter to observe the movement of electrons within the enzyme. The data show that NADPH fractionally reduces the active site flavin with an observed rate constant estimated in this study to be ∼3000 s-1. The flavin then reoxidizes by passing electrons at a similar rate to the proximal Cys159-Cys154 disulfide pair. The dissociation of NADP+ occurs with a rate of ∼180 s-1, which induces the deprotonation of Cys159, and this coincides with the accumulation of an intense FAD-thiolate charge transfer band. It is proposed that the electrons then pass to the Cys596-Cys597 disulfide pair of the associated subunit in the dimer with a net rate constant of ∼2 s-1. (Note: Cys597 is Sec597 in wild-type (WT) SmTGR.) From this position, the electrons can be passed to oxidized thioredoxin or further into the protein to reduce the Cys28-Cys31 disulfide pair of the originating subunit of the dimer. From the Cys28-Cys31 center, electrons can then pass to oxidized glutathione that has a binding site directly adjacent.  more » « less
Award ID(s):
2203593
PAR ID:
10517104
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Editor(s):
Shepartz, Alanna
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Biochemistry
Volume:
62
Issue:
9
ISSN:
0006-2960
Page Range / eLocation ID:
1497 to 1508
Subject(s) / Keyword(s):
Flavoprotein disulfide reductase transient state kinetics anaerobic
Format(s):
Medium: X Size: N/A Other: N/A
Size(s):
N/A
Sponsoring Org:
National Science Foundation
More Like this
  1. Giulivi, Cecilia (Ed.)
    Thioredoxin/glutathione reductase (TGR) from the platyhelminthic parasitic worms has recently been identified as a drug target for the treatment of schistosomiasis. Schistosomes lack catalase, and so are heavily reliant on the regeneration of reduced thioredoxin (Trx) and glutathione (GSH) to reduce peroxiredoxins that ameliorate oxidative damage from hydrogen peroxide generated by the host immune response. This study focuses on the characterization of the catalytic mechanism ofSchistosoma mansoniTGR (SmTGR). Variant forms of SmTGR were studied to assign the function of residues that participate in the electron distribution chain within the enzyme. Using anaerobic transient state spectrophotometric methods, redox changes for the FAD and NADPH were observed and the function of specific residues was defined from observation of charge transfer absorption transitions that are indicative of specific complexations and redox states. The C159S variant prevented distribution of electrons beyond the flavin and as such did not accumulate thiolate-FAD charge transfer absorption. The lack of this absorption facilitated observation of a new charge transfer absorption consistent with proximity of NADPH and FAD. The C159S variant was used to confine electrons from NADPH at the flavin, and it was shown that NADPH and FAD exchange hydride in both directions and come to an equilibrium that yields only fractional FAD reduction, suggesting that both have similar reduction potentials. Mutation of U597 to serine resulted in sustained thiolate-FAD charge transfer absorption and loss of the ability to reduce Trx, indicating that the C596-U597 disulfide functions in the catalytic sequence to receive electrons from the C154 C159 pair and distribute them to Trx. No kinetic evidence for a loss or change in function associated with the distal C28-C31 disulfide was observed when the C31S variant reductive half-reaction was observed. The Y296A variant was shown to slow the rate of but increase extent of reduction of the flavin, and the dissociation of NADP+. The H571 residue was confirmed to be the residue responsible for the deprotonation of the C159 thiol, increasing its reactivity and generating the prominent thiolate-FAD charge transfer absorption that accumulates with oxidation of the flavin. 
    more » « less
  2. Thioredoxin/glutathione reductase from Schistosoma mansoni (SmTGR) is a multifunctional enzyme that catalyzes the reduction of glutathione (GSSG) and thioredoxin, as well as the deglutathionylation of peptide and non-peptide substrates. SmTGR structurally resembles known glutathione reductases (GR) and thioredoxin reductases (TrxR) but with an appended N-terminal domain that has a typical glutaredoxin (Grx) fold. Despite structural homology with known GRs, the site of GSSG reduction has frequently been reported as the Grx domain, based primarily on aerobic, steady-state kinetic measurements and x-ray crystallography. Here, we present an anaerobic characterization of a series of variant SmTGRs to establish the site of GSSG reduction as the cysteine pair most proximal to the FAD, Cys154/Cys159, equivalent to the site of GSSG reduction in GRs. Anaerobic steady-state analysis of U597C, U597S, U597C + C31S, and I592STOP SmTGR demonstrate that the Grx domain is not involved in the catalytic reduction of GSSG, as redox silencing of the C-terminus results in no modulation of the observed turnover number (∼0.025 s−1) and redox silencing of the Grx domain results in an increased observed turnover number (∼0.08 s−1). Transient-state single turnover analysis of these variants corroborates this, as the slowest rate observed titrates hyperbolically with GSSG concentration and approaches a limit that coincides with the respective steady-state turnover number for each variant. Numerical integration fitting of the transient state data can only account for the observed trends when competitive binding of the C-terminus is included, indicating that the partitioning of electrons to either substrate occurs at the Cys154/Cys159 disulfide rather than the previously proposed Cys596/Sec597 sulfide/selenide. Paradoxically, truncating the C-terminus at Ile592 results in a loss of GR activity, indicating a crucial non-redox role for the C-terminus. 
    more » « less
  3. Abstract Flavin‐dependent monooxygenases (FMOs) constitute a diverse enzyme family that catalyzes crucial hydroxylation, epoxidation, and Baeyer–Villiger reactions across various metabolic pathways in all domains of life. Due to the intricate nature of this enzyme family's mechanisms, some aspects of their functioning remain unknown. Here, we present the results of molecular dynamics computations, supplemented by a bioinformatics analysis, that clarify the early stages of their catalytic cycle. We have elucidated the intricate binding mechanism of NADPH and L‐Orn to a class B monooxygenase, the ornithine hydroxylase from known as SidA. Our investigation involved a comprehensive characterization of the conformational changes associated with the FAD (Flavin Adenine Dinucleotide) cofactor, transitioning from theoutto theinposition. Furthermore, we explored the rotational dynamics of the nicotinamide ring of NADPH, shedding light on its role in facilitating FAD reduction, supported by experimental evidence. Finally, we also analyzed the extent of conservation of two Tyr‐loops that play critical roles in the process. 
    more » « less
  4. Jin, Jian-Ping; Forman, Henry (Ed.)
    Dihydropyrimidine dehydrogenase (DPD) is a flavin dependent enzyme that catalyzes the reduction of the 5,6-vinylic bond of pyrimidines uracil and thymine with electrons from NADPH. DPD has two active sites that are separated by ∼60 Å. At one site NADPH binds adjacent to an FAD cofactor and at the other pyrimidine binds proximal to an FMN. Four Fe4S4 centers span the distance between these active sites. It has recently been established that the enzyme undergoes reductive activation prior to reducing the pyrimidine. In this initial process NADPH is oxidized at the FAD site and electrons are transmitted to the FMN via the Fe4S4 centers to yield the active state with a cofactor set of FAD•4(Fe4S4)•FMNH2. The catalytic chemistry of DPD can be studied in transient-state by observation of either NADPH consumption or charge transfer absorption associated with complexation of NADPH adjacent to the FAD. Here we have utilized both sets of absorption transitions to find evidence for specific additional aspects of the DPD mechanism. Competition for binding with NADP+ indicates that the two charge transfer species observed in activation/single turnover reactions arise from NADPH populating the FAD site before and after reductive activation. An additional charge transfer species is observed to accumulate at longer times when high NADPH concentrations are mixed with the enzyme•pyrimidine complex and this data can be modelled based on asymmetry in the homodimer. It was also shown that, like pyrimidines, dihydropyrimidines induce rapid reductive activation indicating that the reduced pyrimidine formed in turnover can stimulate the reinstatement of the active state of the enzyme. Investigation of the reverse reaction revealed that dihydropyrimidines alone can reductively activate the enzyme, albeit inefficiently. In the presence of dihydropyrimidine and NADP+ DPD will form NADPH but apparently without measurable reductive activation. Pyrimidines that have 5-substituent halogens were utilized to probe both reductive activation and turnover. The linearity of the Hammett plot based on the rate of hydride transfer to the pyrimidine establishes that, at least to the radius of an iodo-group, the 5-substituent volume does not have influence on the observed kinetics of pyrimidine reduction. 
    more » « less
  5. Jin, Jian-Ping; Forman, Henry (Ed.)
    Flavin disulfide reductases (FDRs) are FAD-dependent enzymes that transmit electrons from NAD(P)H to reduce specific oxidant substrate disulfides. These enzymes have been studied extensively, most particularly the paradigm examples: glutathione reductase and thioredoxin reductase. The common, though not universal, traits of the family include a tyrosine- or phenylalanine-gated binding pocket for NAD(P) nicotinamides adjacent to the FAD isoalloxazine re-face, and a disulfide stacked against the si-face of the isoalloxazine whose dithiol form is activated for subsequent exchange reactions by a nearby histidine acting as a base. This arrangement promotes transduction of the reducing equivalents for disulfide exchange relay reactions. From an observational standpoint the proximal parallel stacking of three redox moieties induces up to three opportunities for unique charge transfer interactions (NAD(P)H FAD, NAD(P)+•FADH2, and FAD•thiolate). In transient state, the charge transfer transitions provide discrete signals to assign reaction sequences. This review summarizes the lineage of observations for the FDR enzymes that have been extensively studied. Where applicable and in order to chart a consistent interpretation of the record, only data derived from studies that used anaerobic methods are cited. These data reveal a recurring theme for catalysis that is elaborated with specific additional functionalities for each oxidant substrate. 
    more » « less