Antibody–drug conjugates (ADCs) are antibody‐based therapeutics that have proven to be highly effective cancer treatment platforms. They are composed of monoclonal antibodies conjugated with highly potent drugs via chemical linkers. Compared to cysteine‐targeted chemistries, conjugation at native lysine residues can lead to a higher degree of structural heterogeneity, and thus it is important to evaluate the impact of conjugation on antibody conformation. Here, we present a workflow involving native ion mobility (IM)‐MS and gas‐phase unfolding for the structural characterization of lysine‐linked monoclonal antibody (mAb)–biotin conjugates. Following the determination of conjugation states via denaturing Liquid Chromatography‐Mass Spectrometry (LC–MS) measurements, we performed both size exclusion chromatography (SEC) and native IM‐MS measurements in order to compare the structures of biotinylated and unmodified IgG1 molecules. Hydrodynamic radii (Rh) and collision cross‐sectional (CCS) values were insufficient to distinguish the conformational changes in these antibody–biotin conjugates owing to their flexible structures and limited instrument resolution. In contrast, collision induced unfolding (CIU) analyses were able to detect subtle structural and stability differences in the mAb upon biotin conjugation, exhibiting a sensitivity to mAb conjugation that exceeds native MS analysis alone. Destabilization of mAb–biotin conjugates was detected by both CIU and differential scanning calorimetry (DSC) data, suggesting a previously unknown correlation between the two measurement tools. We conclude by discussing the impact of IM‐MS and CIU technologies on the future of ADC development pipelines.
This content will become publicly available on February 21, 2025
Collision-Induced Unfolding Reveals Disease-Associated Stability Shifts in Mitochondrial Transfer Ribonucleic Acids
Ribonucleic acids (RNAs) remain challenging targets for structural biology, creating barriers to understanding their vast functions in cellular biology and fully realizing their applications in biotechnology. The inherent dynamism of RNAs creates numerous obstacles in capturing their biologically relevant higher-order structures (HOSs), and as a result, many RNA functions remain unknown. In this study, we describe the development of native ion mobility–mass spectrometry and collision-induced unfolding (CIU) for the structural characterization of a variety of RNAs. We evaluate the ability of these techniques to preserve native structural features in the gas phase across a wide range of functional RNAs. Finally, we apply these tools to study the elusive mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes-associated A3243G mutation. Our data demonstrate that our experimentally determined conditions preserve some solution-state memory of RNAs via the correlated complexity of CIU fingerprints and RNA HOS, the observation of predicted stability shifts in the control RNA samples, and the retention of predicted magnesium binding events in gas-phase RNA ions. Significant differences in collision cross section and stability are observed as a function of the A3243G mutation across a subset of the mitochondrial tRNA maturation pathway. We conclude by discussing the potential application of CIU for the development of RNA-based biotherapeutics and, more broadly, transcriptomic characterization.
more »
« less
- Award ID(s):
- 2304961
- NSF-PAR ID:
- 10517220
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- Journal of the American Chemical Society
- Volume:
- 146
- Issue:
- 7
- ISSN:
- 0002-7863
- Page Range / eLocation ID:
- 4412 to 4420
- Subject(s) / Keyword(s):
- Ion Mobility Native MS Structural Biology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase.more » « less
-
The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.more » « less
-
Fc-fusion proteins are an emerging class of protein therapeutics that combine the properties of biological ligands with the unique properties of the fragment crystallizable (Fc) domain of an immunoglobulin G (IgG). Due to their diverse higher-order structures (HOSs), Fc-fusion proteins remain challenging characterization targets within biopharmaceutical pipelines. While high-resolution biophysical tools are available for HOS characterization, they frequently demand extended time frames and substantial quantities of purified samples, rendering them impractical for swiftly screening candidate molecules. Herein, we describe the development of ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) workflows that aim to fill this technology gap, where we focus on probing the HOS of a model Fc-Interleukin-10 (Fc-IL-10) fusion protein engineered using flexible glycine-serine linkers. We evaluate the ability of these techniques to probe the flexibility of Fc-IL-10 in the absence of bulk solvent relative to other proteins of similar size, as well as localize structural changes of low charge state Fc-IL-10 ions to specific Fc and IL-10 unfolding events during CIU. We subsequently apply these tools to probe the local effects of glycine-serine linkers on the HOS and stability of IL-10 homodimer, which is the biologically active form of IL-10. Our data reveals that Fc-IL-10 produces significantly more structural transitions during CIU and broader IM profiles when compared to a wide range of model proteins, indicative of its exceptional structural dynamism. Furthermore, we use a combination of enzymatic approaches to annotate these intricate CIU data and localize specific transitions to the unfolding of domains within Fc-IL-10. Finally, we detect a strong positive, quadratic relationship between average linker mass and fusion protein stability, suggesting a cooperative influence between glycine-serine linkers and overall fusion protein stability. This is the first reported study on the use of IM-MS and CIU to characterize HOS of Fc-fusion proteins, illustrating the practical applicability of this approach.more » « less
-
Native ion mobility-mass spectrometry (IM-MS) typically introduces protein ions into the gas phase through nano-elecrospray ionization (nESI). Many nESI setups have mobile stages for tuning the ion signal and extent of co-solute and salt adduction. However, tuning the position of the emitter capillary in nESI can have unintended downstream consequences for collision-induced unfolding or collision-induced dissociation (CIU/D) experiments. Here we show that relatively small variations in the nESI emitter position can shift the midpoint potential of CID breakdown curves and CIU transitions; by as much as 8 V on commercial instruments.more » « less