Unlike minors, the induced subgraph obstructions to bounded treewidth come in a large variety, including, for every t ∈ N, the t-basic obstructions: the graphs Kt+1 and Kt,t, along with the subdivisions of the t-by-t wall and their line graphs. But this list is far from complete. The simplest example of a “non-basic” obstruction is due to Pohoata and Davies (independently). For every n ∈ N, they construct certain graphs of treewidth n and with no 3-basic obstruction as an induced subgraph, which we call n-arrays. Let us say a graph class G is clean if the only obstructions to bounded treewidth in G are in fact the basic ones. It follows that a full description of the induced subgraph obstructions to bounded treewidth is equivalent to a characterization of all families H of graphs for which the class of all H-free graphs is clean (a graph G is H-free if no induced subgraph of G is isomorphic to any graph in H). This remains elusive, but there is an immediate necessary condition: if H-free graphs are clean, then there are only finitely many n ∈ N such that there is an n-array which is H-free. The above necessary condition is not sufficient in general. However, the situation turns out to be different if H is finite: we prove that for every finite set H of graphs, the class of all H-free graphs is clean if and only if there is no H-free n-array except possibly for finitely many values of n.
more »
« less
A Note on the Gyárfás–Sumner Conjecture
The Gyárfás–Sumner conjecture says that for every tree T and every integer t ≥ 1, if G is a graph with no clique of size t and with sufficiently large chromatic number, then G contains an induced subgraph isomorphic to T. This remains open, but we prove that under the same hypotheses, G contains a subgraph H isomorphic to T that is “path-induced”; that is, for some distinguished vertex r, every path of H with one end r is an induced path of G.
more »
« less
- Award ID(s):
- 2154169
- PAR ID:
- 10517604
- Publisher / Repository:
- Springer Link
- Date Published:
- Journal Name:
- Graphs and Combinatorics
- Volume:
- 40
- Issue:
- 2
- ISSN:
- 0911-0119
- Subject(s) / Keyword(s):
- induced subgraphs chromatic number
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A _theta_ is a graph consisting of two non-adjacent vertices and three internally disjoint paths between them, each of length at least two. For a family $$\mathcal{H}$$ of graphs, we say a graph $$G$$ is $$\mathcal{H}$$-_free_ if no induced subgraph of $$G$$ is isomorphic to a member of $$\mathcal{H}$$. We prove a conjecture of Sintiari and Trotignon, that there exists an absolute constant $$c$$ for which every (theta, triangle)-free graph $$G$$ has treewidth at most $$c\log (|V(G)|)$$. A construction by Sintiari and Trotignon shows that this bound is asymptotically best possible, and (theta, triangle)-free graphs comprise the first known hereditary class of graphs with arbitrarily large yet logarithmic treewidth.Our main result is in fact a generalization of the above conjecture, that treewidth is at most logarithmic in $|V(G)|$ for every graph $$G$$ excluding the so-called _three-path-configurations_ as well as a fixed complete graph. It follows that several NP-hard problems such as Stable Set, Vertex Cover, Dominating Set and $$k$$-Coloring (for fixed $$k$$) admit polynomial time algorithms in graphs excluding the three-path-configurations and a fixed complete graph.more » « less
-
For a graph F, a graph G is F-free if it does not contain an induced subgraph isomorphic to F. For two graphs G and H, an H-coloring of G is a mapping f : V (G) → V (H) such that for every edge uv ∈ E(G) it holds that f(u)f(v) ∈ E(H). We are interested in the complexity of the problem H-Coloring, which asks for the existence of an H-coloring of an input graph G. In particular, we consider H-Coloring of F-free graphs, where F is a fixed graph and H is an odd cycle of length at least 5. This problem is closely related to the well known open problem of determining the complexity of 3-Coloring of Pt-free graphs. We show that for every odd k ≥ 5 the Ck-Coloring problem, even in the precoloring-extension variant, can be solved in polynomial time in P9-free graphs. On the other hand, we prove that the extension version of Ck-Coloring is NP-complete for F-free graphs whenever some component of F is not a subgraph of a subdivided claw.more » « less
-
We prove that for every path , and every integer , there is a polynomial such that every graph with chromatic number greater than either contains as an induced subgraph, or contains as a subgraph the complete ‐partite graph with parts of cardinality . For and general this is a classical theorem of Gyárfás, and for and general this is a theorem of Bonamy et al.more » « less
An official website of the United States government

