skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unraveling the Atmospheric Energy Input and Ionization Due To EMIC‐Driven Electron Precipitation From ELFIN Observations
Abstract Energetic electron precipitation (EEP) from the radiation belts into Earth's atmosphere leads to several profound effects (e.g., enhancement of ionospheric conductivity, possible acceleration of ozone destruction processes). An accurate quantification of the energy input and ionization due to EEP is still lacking due to instrument limitations of low‐Earth‐orbit satellites capable of detecting EEP. The deployment of the Electron Losses and Fields InvestigatioN (ELFIN) CubeSats marks a new era of observations of EEP with an improved pitch‐angle (0°–180°) and energy (50 keV–6 MeV) resolution. Here, we focus on the EEP recorded by ELFIN coincident with electromagnetic ion cyclotron (EMIC) waves, which play a major role in radiation belt electron losses. The EMIC‐driven EEP (∼200 keV–∼2 MeV) exhibits a pitch‐angle distribution (PAD) that flattens with increasing energy, indicating more efficient high‐energy precipitation. Leveraging the combination of unique electron measurements from ELFIN and a comprehensive ionization model known as Boulder Electron Radiation to Ionization (BERI), we quantify the energy input of EMIC‐driven precipitation (on average, ∼3.3 × 10−2 erg/cm2/s), identify its location (any longitude, 50°–70° latitude), and provide the expected range of ion‐electron production rate (on average, 100–200 pairs/cm3/s), peaking in the mesosphere—a region often overlooked. Our findings are crucial for improving our understanding of the magnetosphere‐ionosphere‐atmosphere system as they accurately specify the contribution of EMIC‐driven EEP, which serves as a crucial input to state‐of‐the‐art atmospheric models (e.g., WACCM) to quantify the accurate impact of EMIC waves on both the atmospheric chemistry and dynamics.  more » « less
Award ID(s):
2019950
PAR ID:
10517732
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
AGU Advances
Volume:
5
Issue:
3
ISSN:
2576-604X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Electromagnetic ion cyclotron (EMIC) waves can drive radiation belt depletion and Low‐Earth Orbit satellites can detect the resulting electron and proton precipitation. The ELFIN (Electron Losses and Fields InvestigatioN) CubeSats provide an excellent opportunity to study the properties of EMIC‐driven electron precipitation with much higher energy and pitch‐angle resolution than previously allowed. We collect EMIC‐driven electron precipitation events from ELFIN observations and use POES (Polar Orbiting Environmental Satellites) to search for 10s–100s keV proton precipitation nearby as a proxy of EMIC wave activity. Electron precipitation mainly occurs on localized radial scales (∼0.3 L), over 15–24 MLT and 5–8 L shells, stronger at ∼MeV energies and weaker down to ∼100–200 keV. Additionally, the observed loss cone pitch‐angle distribution agrees with quasilinear predictions at ≳250 keV (more filled loss cone with increasing energy), while additional mechanisms are needed to explain the observed low‐energy precipitation. 
    more » « less
  2. Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐driven acceleration of 100–300 keV seed electrons injected from the plasma sheet. We examine a weak geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of their wave power distribution, to examine the role of those waves in the observed relativistic electron flux variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and modeled local energy gradients of electron phase space density following injections, to accurately forecast the dynamical evolution of trapped electron fluxes. 
    more » « less
  3. Abstract Although the effects of electromagnetic ion cyclotron (EMIC) waves on the dynamics of the Earth's outer radiation belt have been a topic of intense research for more than 20 years, their influence on rapid dropouts of electron flux has not yet been fully assessed. Here, we make use of contemporaneous measurements on the same ‐shell of trapped electron fluxes at 20,000 km altitude by Global Positioning System (GPS) spacecraft and of trapped and precipitating electron fluxes at 450 km altitude by Electron Losses and Fields Investigation (ELFIN) CubeSats in 2020–2022, to investigate the impact of EMIC wave‐driven electron precipitation on the dynamics of the outer radiation belt below the last closed drift shell of trapped electrons. During six of the seven selected events, the strong 1–2 MeV electron precipitation measured at ELFIN, likely driven by EMIC waves, occurs within 1–2 hr from a dropout of relativistic electron flux at GPS spacecraft. Using quasi‐linear diffusion theory, EMIC wave‐driven pitch angle diffusion rates are inferred from ELFIN measurements, allowing us to quantitatively estimate the corresponding flux drop based on typical spatial and temporal extents of EMIC waves. We find that EMIC wave‐driven electron precipitation alone can account for the observed dropout magnitude at 1.5–3 MeV during all events and that, when dropouts extend down to 0.5 MeV, a fraction of electron loss may sometimes be due to EMIC waves. This suggests that EMIC wave‐driven electron precipitation could modulate dropout magnitude above 1 MeV in the heart of the outer radiation belt. 
    more » « less
  4. Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$$\Delta L\sim 0.56$$ Δ L 0.56 ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$$L\sim 5-7$$ L 5 7 at dusk, while a smaller subset exists at$$L\sim 8-12$$ L 8 12 at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$$L$$ L -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$$\sim 1.45$$ 1.45 MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation. 
    more » « less
  5. Abstract Electromagnetic ion cyclotron (EMIC) waves are known to be efficient for precipitating >1 MeV electrons from the magnetosphere into the upper atmosphere. Despite considerable evidence showing that EMIC‐driven electron precipitation can extend down to sub‐MeV energies, the precise physical mechanism driving sub‐MeV electron precipitation remains an active area of investigation. In this study, we present an electron precipitation event observed by ELFIN CubeSats on 11 January 2022, exclusively at sub‐MeV energy atL ∼ 8–10.5, where trapped MeV electrons were nearly absent. The THEMIS satellites observed conjugate H‐band and He‐band EMIC waves and hiss waves in plasmaspheric plumes near the magnetic equator. Quasi‐linear diffusion results demonstrate that the observed He‐band EMIC waves, with a high ratio of plasma to electron cyclotron frequency, can drive electron precipitation down to ∼400 keV. Our findings suggest that exclusive sub‐MeV precipitation (without concurrent MeV precipitation) can be associated with EMIC waves, especially in the plume region at highLshells. 
    more » « less