We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or
Energetic electron precipitation (EEP) from the radiation belts into Earth's atmosphere leads to several profound effects (e.g., enhancement of ionospheric conductivity, possible acceleration of ozone destruction processes). An accurate quantification of the energy input and ionization due to EEP is still lacking due to instrument limitations of low‐Earth‐orbit satellites capable of detecting EEP. The deployment of the Electron Losses and Fields InvestigatioN (ELFIN) CubeSats marks a new era of observations of EEP with an improved pitch‐angle (0°–180°) and energy (50 keV–6 MeV) resolution. Here, we focus on the EEP recorded by ELFIN coincident with electromagnetic ion cyclotron (EMIC) waves, which play a major role in radiation belt electron losses. The EMIC‐driven EEP (∼200 keV–∼2 MeV) exhibits a pitch‐angle distribution (PAD) that flattens with increasing energy, indicating more efficient high‐energy precipitation. Leveraging the combination of unique electron measurements from ELFIN and a comprehensive ionization model known as Boulder Electron Radiation to Ionization (BERI), we quantify the energy input of EMIC‐driven precipitation (on average, ∼3.3 × 10−2 erg/cm2/s), identify its location (any longitude, 50°–70° latitude), and provide the expected range of ion‐electron production rate (on average, 100–200 pairs/cm3/s), peaking in the mesosphere—a region often overlooked. Our findings are crucial for improving our understanding of the magnetosphere‐ionosphere‐atmosphere system as they accurately specify the contribution of EMIC‐driven EEP, which serves as a crucial input to state‐of‐the‐art atmospheric models (e.g., WACCM) to quantify the accurate impact of EMIC waves on both the atmospheric chemistry and dynamics.
more » « less- Award ID(s):
- 2019950
- PAR ID:
- 10517732
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- AGU Advances
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2576-604X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$\Delta L\sim 0.56$ at dusk, while a smaller subset exists at$L\sim 5-7$ at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L\sim 8-12$ -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$L$ MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.$\sim 1.45$ -
Abstract Electromagnetic ion cyclotron (EMIC) waves are known to typically cause electron losses into Earth's upper atmosphere at >~1 MeV, while the minimum energy of electrons subject to efficient EMIC‐driven precipitation loss is unresolved. This letter reports electron precipitation from subrelativistic energies of ~250 keV up to ~1 MeV observed by the Focused Investigations of Relativistic Electron Burst Intensity, Range and Dynamics (FIREBIRD‐II) CubeSats, while two Polar Operational Environmental Satellites (POES) observed proton precipitation nearby. Van Allen Probe A detected EMIC waves (~0.7–2.0 nT) over the similar L shell extent of electron precipitation observed by FIREBIRD‐II, albeit with a ~1.6 magnetic local time (MLT) difference. Although plasmaspheric hiss and magnetosonic waves were also observed, quasi‐linear calculations indicate that EMIC waves were the most efficient in driving the electron precipitation. Quasi‐linear theory predicts efficient precipitation at >0.8–1 MeV (due to H‐band EMIC waves), suggesting that other mechanisms are required to explain the observed subrelativistic electron precipitation.
-
Abstract The two most important wave modes responsible for energetic electron scattering to the Earth's ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves. These wave modes operate in different energy ranges: whistler‐mode waves are mostly effective in scattering sub‐relativistic electrons, whereas EMIC waves predominately scatter relativistic electrons. In this study, we report the direct observations of energetic electron (from 50 keV to 2.5 MeV) scattering driven by the combined effect of whistler‐mode and EMIC waves using ELFIN measurements. We analyze five events showing EMIC‐driven relativistic electron precipitation accompanied by bursts of whistler‐driven precipitation over a wide energy range. These events reveal an enhancement of relativistic electron precipitation by EMIC waves during intervals of whistler‐mode precipitation compared to intervals of EMIC‐only precipitation. We discuss a possible mechanism responsible for such precipitation. We suggest that below the minimum resonance energy (
E min) of EMIC waves, the whistler‐mode wave may both scatter electrons into the loss‐cone and accelerate them to higher energy (1–3 MeV). Electrons accelerated aboveE minresonate with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. This enhances relativistic electron precipitation beyond what EMIC waves alone could achieve. We present theoretical support for this mechanism, along with observational evidence from the ELFIN mission. We discuss methodologies for further observational investigations of this combined whistler‐mode and EMIC precipitation. -
Abstract Relativistic electron losses in Earth's radiation belts are usually attributed to electron resonant scattering by electromagnetic waves. One of the most important wave modes for such scattering is the electromagnetic ion cyclotron (EMIC) mode. Within the quasi‐linear diffusion framework, the cyclotron resonance of relativistic electrons with EMIC waves results in very fast electron precipitation to the atmosphere. However, wave intensities often exceed the threshold for nonlinear resonant interaction, and such intense EMIC waves have been shown to transport electrons away from the loss cone due to the
force bunching effect. In this study we investigate if this transport can block electron precipitation. We combine test particle simulations, low‐altitude observations of EMIC‐driven electron precipitation by the Electron Losses and Fields Investigations mission, and ground‐based EMIC observations. Comparing simulations and observations, we show that, despite the low pitch‐angle electrons being transported away from the loss cone, the scattering at higher pitch angles results in the loss cone filling and electron precipitation. -
Abstract Electromagnetic ion cyclotron (EMIC) waves can drive precipitation of tens of keV protons and relativistic electrons, and are a potential candidate for causing radiation belt flux dropouts. In this study, we quantitatively analyze three cases of EMIC‐driven precipitation, which occurred near the dusk sector observed by multiple Low‐Earth‐Orbiting (LEO) Polar Operational Environmental Satellites/Meteorological Operational satellite programme (POES/MetOp) satellites. During EMIC wave activity, the proton precipitation occurred from few tens of keV up to hundreds of keV, while the electron precipitation was mainly at relativistic energies. We compare observations of electron precipitation with calculations using quasi‐linear theory. For all cases, we consider the effects of other magnetospheric waves observed simultaneously with EMIC waves, namely, plasmaspheric hiss and magnetosonic waves, and find that the electron precipitation at MeV energies was predominantly caused by EMIC‐driven pitch angle scattering. Interestingly, each precipitation event observed by a LEO satellite extended over a limited L shell region (Δ
L ~ 0.3 on average), suggesting that the pitch angle scattering caused by EMIC waves occurs only when favorable conditions are met, likely in a localized region. Furthermore, we take advantage of the LEO constellation to explore the occurrence of precipitation at different L shells and magnetic local time sectors, simultaneously with EMIC wave observations near the equator (detected by Van Allen Probes) or at the ground (measured by magnetometers). Our analysis shows that although EMIC waves drove precipitation only in a narrow ΔL , electron precipitation was triggered at various locations as identified by POES/MetOp over a rather broad region (up to ~4.4 hr MLT and ~1.4L shells) with similar patterns between satellites.