skip to main content


Title: Uncertain Pathways to a Future Safe Climate
Abstract

Global climate change is often thought of as a steady and approximately predictable physical response to increasing forcings, which then requires commensurate adaptation. But adaptation has practical, cultural and biological limits, and climate change may pose unanticipated global hazards, sudden changes or other surprises–as may societal adaptation and mitigation responses. These poorly known factors could substantially affect the urgency of mitigation as well as adaptation decisions. We outline a strategy for better accommodating these challenges by making climate science more integrative, in order to identify and quantify known and novel physical risks including those arising from interactions with ecosystems and society. We need to do this even–or especially–when they are highly uncertain, and to explore risks and opportunities associated with mitigation and adaptation responses by engaging across disciplines. We argue that upcoming climate assessments need to be more risk‐aware, and suggest ways of achieving this. These strategies improve the chances of anticipating potential surprises and identifying and communicating “safe landing” pathways that meet UN Sustainable Development Goals and guide humanity toward a better future.

 
more » « less
PAR ID:
10517733
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
12
Issue:
6
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    It has become increasingly clear that cities will have to simultaneously undertake both adaptation and mitigation in response to accelerating climate change and the growing demands for meaningful climate action. Here we examine the connections between climate mitigation and climate adaptation, specifically, between low‐carbon energy systems and extreme events. The article specifically addresses the question, how do responses to extreme climate risks enhance or limit capacity to promote city‐level greenhouse gas (GHG) mitigation? As a step toward answering this question, we present a framework for considering windows of opportunity that may arise as a result of extreme events and how these windows can be exploited to foster development and implementation of low‐carbon energy strategies. Four brief case studies are used to provide empirical background and determine the impact of potential windows of opportunity. Some general conclusions are defined. In particular, the existing energy system structure is an important determinant of impact and potential for energy transitions. Well‐developed and articulated governance strategies and ready access of effective and economically efficient alternative energy technology were key to transitions. However, prospects for inequity in development and implementation of low‐carbon solutions need to be considered. Finally, exploiting windows of opportunity afforded by extreme events for developing low‐carbon economy and infrastructure also can provide resilience against those very events. These types of responses will be needed as extreme events increase in frequency and magnitude in the future, with cities as primary sites of impact and action.

    This article is categorized under:

    Vulnerability and Adaptation to Climate Change > Learning from Cases and Analogies

     
    more » « less
  2. Abstract

    Climate change by its very nature epitomizes the necessity and usefulness of the global-to-local-to-global (GLG) paradigm. It is a global problem with the potential to affect local communities and ecosystems. Accumulation of local impacts and responses to climate change feeds back to regional and global systems creating feedback loops. Understanding these complex impacts and interactions is key to developing more resilient adaptation measures and designing more efficient mitigation policies. To this date, however, GLG interactions have not yet been an integrative part of the decision-support toolkit. The typical approach either traces the impacts of global action on the local level or estimates the implications of local policies at the global scale. The first approach misses cumulative feedback of local responses that can have regional, national or global impacts. In the second case, one undermines a global context of the local actions most likely misrepresenting the complexity of the local decision-making process. Potential interactions across scales are further complicated by the presence of cascading impacts, connected risks and tipping points. Capturing these dimensions is not always a straightforward task and often requires a departure from conventional modeling approaches. In this paper, we review the state-of-the-art approaches to modeling GLG interactions in the context of climate change. We further identify key limitations that drive the lack of GLG coupling cases and discuss what could be done to address these challenges.

     
    more » « less
  3. Abstract

    Climate change is altering conditions in high‐elevation streams worldwide, with largely unknown effects on resident communities of aquatic insects. Here, we review the challenges of climate change for high‐elevation aquatic insects and how they may respond, focusing on current gaps in knowledge. Understanding current effects and predicting future impacts will depend on progress in three areas. First, we need better descriptions of the multivariate physical challenges and interactions among challenges in high‐elevation streams, which include low but rising temperatures, low oxygen supply and increasing oxygen demand, high and rising exposure to ultraviolet radiation, low ionic strength, and variable but shifting flow regimes. These factors are often studied in isolation even though they covary in nature and interact in space and time. Second, we need a better mechanistic understanding of how physical conditions in streams drive the performance of individual insects. Environment‐performance links are mediated by physiology and behavior, which are poorly known in high‐elevation taxa. Third, we need to define the scope and importance of potential responses across levels of biological organization. Short‐term responses are defined by the tolerances of individuals, their capacities to perform adequately across a range of conditions, and behaviors used to exploit local, fine‐scale variation in abiotic factors. Longer term responses to climate change, however, may include individual plasticity and evolution of populations. Whether high‐elevation aquatic insects can mitigate climatic risks via these pathways is largely unknown.

     
    more » « less
  4. Abstract

    Climate policies will need to incentivize transformative societal changes if they are to achieve emission reductions consistent with 1.5°C temperature targets. To contribute to efforts for aligning climate policy with broader societal goals, specifically those related to sustainable development, we identify the effects of climate mitigation policy on aspects of socioeconomic development that are known determinants of conflict and evaluate the plausibility and importance of potential pathways to armed conflict and political violence. Conditional on preexisting societal tensions and socioeconomic vulnerabilities, we isolate effects on economic performance, income and livelihood, food and energy prices, and land tenure as most likely to increase conflict risks. Climate policy designs may be critical to moderate these risks as different designs can promote more favorable societal outcomes such as equity and inclusion. Coupling research with careful monitoring and evaluation of the intermediate societal effects at early stages of policy implementation will be a critical part of learning and moderating potential conflict risks. Importantly, better characterizing the future conflict risks under climate policy allows for a more comprehensive comparison to the conflict risk if mitigation is not implemented and graver climate damages are experienced.

    This article is categorized under:

    The Carbon Economy and Climate Mitigation > Benefits of Mitigation

     
    more » « less
  5. The complex international regime for climate change has evolved over the past three decades, from the Framework Convention on Climate Change and the Kyoto Protocol through the Paris Agreement and beyond. We assess this evolution from the 1990s to the 2020s, and its potential future evolution from the 2020s to the 2050s, across three main policy strategies: mitigation, adaptation, and reflection. In its first three decades, the regime has focused predominantly on the mitigation of net emissions and on engaging all major emitting countries in that effort. More recently, as progress on mitigation has been slow and as the impacts of climate change have risen around the world, the regime has begun to address adaptation. The next three decades may see the rise of a third strategy, reflection, if actors (collectively or unilaterally) perceive an urgent need to alleviate peak climate damages through fast-acting but controversial and risky climate interventions known as sunlight reflection methods or solar radiation modification (SRM). Several major international groups have recently issued reports on SRM, yet the international climate change regime has not yet constructed a governance regime for assessment or management of SRM. We recommend and outline comprehensive risk-risk tradeoff analyses of SRM to help avoid harmful countervailing risks. We suggest the development of an adaptive governance regime, starting early and embracing iterative and inclusive learning and updating over time. We urge that among the first key steps should be the development of a transparent international monitoring system for SRM. Such a monitoring system could provide early warning and help deter any unilateral SRM, assess the intended and unintended global and regional impacts of any research or eventual deployment of SRM, foster collective deliberation and reduce the risk of international conflict over SRM, help attribute adverse side effects of SRM to assist those adversely affected, and aid learning to improve the system adaptively over time. Thus, any reflection (of sunlight) should involve ongoing reflection (analysis and revision). Such an SRM monitoring regime is needed before SRM might be deployed, and can be developed at the same time that the focus of current efforts remains on mitigation and adaptation.

     
    more » « less