Abstract Solar energetic particles (SEPs) are associated with extreme solar events that can cause major damage to space- and ground-based life and infrastructure. High-intensity SEP events, particularly ∼100 MeV SEP events, can pose severe health risks for astronauts owing to radiation exposure and affect Earth’s orbiting satellites (e.g., Landsat and the International Space Station). A major challenge in the SEP event prediction task is the lack of adequate SEP data because of the rarity of these events. In this work, we aim to improve the prediction of ∼30, ∼60, and ∼100 MeV SEP events by synthetically increasing the number of SEP samples. We explore the use of a univariate and multivariate time series of proton flux data as input to machine-learning-based prediction methods, such as time series forest (TSF). Our study covers solar cycles 22, 23, and 24. Our findings show that using data augmentation methods, such as the synthetic minority oversampling technique, remarkably increases the accuracy and F1-score of the classifiers used in this research, especially for TSF, where the average accuracy increased by 20%, reaching around 90% accuracy in the ∼100 MeV SEP prediction task. We also achieved higher prediction accuracy when using the multivariate time series data of the proton flux. Finally, we build a pipeline framework for our best-performing model, TSF, and provide a comprehensive hierarchical classification of the ∼100, ∼60, and ∼30 MeV and non-SEP prediction scenarios.
more »
« less
Toward Enhanced Prediction of High‐Impact Solar Energetic Particle Events Using Multimodal Time Series Data Fusion Models
Abstract Solar energetic particle (SEP) events, originating from solar flares and Coronal Mass Ejections, present significant hazards to space exploration and technology on Earth. Accurate prediction of these high‐energy events is essential for safeguarding astronauts, spacecraft, and electronic systems. In this study, we conduct an in‐depth investigation into the application of multimodal data fusion techniques for the prediction of high‐energy SEP events, particularly ∼100 MeV events. Our research utilizes six machine learning (ML) models, each finely tuned for time series analysis, including Univariate Time Series (UTS), Image‐based model (Image), Univariate Feature Concatenation (UFC), Univariate Deep Concatenation (UDC), Univariate Deep Merge (UDM), and Univariate Score Concatenation (USC). By combining time series proton flux data with solar X‐ray images, we exploit complementary insights into the underlying solar phenomena responsible for SEP events. Rigorous evaluation metrics, including accuracy, F1‐score, and other established measures, are applied, along withK‐fold cross‐validation, to ensure the robustness and generalization of our models. Additionally, we explore the influence of observation window sizes on classification accuracy.
more »
« less
- PAR ID:
- 10517776
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 22
- Issue:
- 6
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solar energetic particle (SEP) events, in particular high-energy-range SEP events, pose significant risks to space missions, astronauts, and technological infrastructure. Accurate prediction of these high-impact events is crucial for mitigating potential hazards. In this study, we present an end-to-end ensemble machine learning (ML) framework for the prediction of high-impact ∼100 MeV SEP events. Our approach leverages diverse data modalities sourced from the Solar and Heliospheric Observatory and the Geostationary Operational Environmental Satellite integrating extracted active region polygons from solar extreme ultraviolet (EUV) imagery, time-series proton flux measurements, sunspot activity data, and detailed active region characteristics. To quantify the predictive contribution of each data modality (e.g., EUV or time series), we independently evaluate them using a range of ML models to assess their performance in forecasting SEP events. Finally, to enhance the SEP predictive performance, we train an ensemble learning model that combines all the models trained on individual data modalities, leveraging the strengths of each data modality. Our proposed ensemble approach shows promising performance, achieving a recall of 0.80 and 0.75 in balanced and imbalanced settings, respectively, underscoring the effectiveness of multimodal data integration for robust SEP event prediction and enhanced forecasting capabilities.more » « less
-
Abstract The prediction of solar energetic particle (SEP) events garners increasing interest as space missions extend beyond Earth’s protective magnetosphere. These events, which are, in most cases, products of magnetic-reconnection-driven processes during solar flares or fast coronal-mass-ejection-driven shock waves, pose significant radiation hazards to aviation, space-based electronics, and particularly space exploration. In this work, we utilize the recently developed data set that combines the Solar Dynamics Observatory/Space-weather Helioseismic and Magnetic Imager Active Region Patches and the Solar and Heliospheric Observatory/Space-weather Michelson Doppler Imager Active Region Patches. We employ a suite of machine learning strategies, including support vector machines (SVMs) and regression models, to evaluate the predictive potential of this new data product for a forecast of post-solar flare SEP events. Our study indicates that despite the augmented volume of data, the prediction accuracy reaches 0.7 ± 0.1 (experimental setting), which aligns with but does not exceed these published benchmarks. A linear SVM model with training and testing configurations that mimic an operational setting (positive–negative imbalance) reveals a slight increase (+0.04 ± 0.05) in the accuracy of a 14 hr SEP forecast compared to previous studies. This outcome emphasizes the imperative for more sophisticated, physics-informed models to better understand the underlying processes leading to SEP events.more » « less
-
Abstract Solar energetic particle (SEP) events pose significant risks to both space and ground-level infrastructure, as well as to human health in space. Understanding and predicting these events are critical for mitigating their potential impacts. In this paper, we address the challenge of predicting SEP events using proton flux data. We leverage some of the most recent advances in time series data mining, such as shapelets and the matrix profile, to propose a simple and easily understandable prediction approach. Our objective is to mitigate the interpretability challenges inherent to most machine learning models and to show that other methods exist that can not only yield accurate forecasts but also facilitate exploration and insight generation within the data domain. For this purpose, we construct a multivariate time series data set consisting of proton flux data recorded by the National Oceanic and Atmospheric Administration's geosynchronous orbit Earth-observing satellite. Then, we use our proposed approach to mine shapelets and make predictions using a random forest classifier. We demonstrate that our approach rivals state-of-the-art SEP prediction, offering superior interpretability and the ability to predict SEP events before their parent eruptive flares.more » « less
-
Abstract The high energy particles originating from the Sun, known as solar energetic particles (SEPs), contribute significantly to the space radiation environment, posing serious threats to astronauts and scientific instruments on board spacecraft. The mechanism that accelerates the SEPs to the observed energy ranges, their transport in the inner heliosphere, and the influence of suprathermal seed particle spectrum are open questions in heliophysics. Accurate predictions of the occurrences of SEP events well in advance are necessary to mitigate their adverse effects but prediction based on first principle models still remains a challenge. In this scenario, adopting a machine learning approach to SEP modeling and prediction is desirable. However, the lack of a balanced database of SEP events restrains this approach. We addressed this limitation by generating large data sets of synthetic SEP events sampled from the physics‐based model, Energetic Particle Radiation Environment Module (EPREM). Using this data, we developed neural networks‐based surrogate models to study the seed population parameter space. Our models, EPREM‐S, run thousands to millions of times faster (depending on computer hardware), making simulation‐based inference workflows practicable in SEP studies while providing predictive uncertainty estimates using a deep ensemble approach.more » « less
An official website of the United States government
