skip to main content


Title: Toward Enhanced Prediction of High‐Impact Solar Energetic Particle Events Using Multimodal Time Series Data Fusion Models
Abstract

Solar energetic particle (SEP) events, originating from solar flares and Coronal Mass Ejections, present significant hazards to space exploration and technology on Earth. Accurate prediction of these high‐energy events is essential for safeguarding astronauts, spacecraft, and electronic systems. In this study, we conduct an in‐depth investigation into the application of multimodal data fusion techniques for the prediction of high‐energy SEP events, particularly ∼100 MeV events. Our research utilizes six machine learning (ML) models, each finely tuned for time series analysis, including Univariate Time Series (UTS), Image‐based model (Image), Univariate Feature Concatenation (UFC), Univariate Deep Concatenation (UDC), Univariate Deep Merge (UDM), and Univariate Score Concatenation (USC). By combining time series proton flux data with solar X‐ray images, we exploit complementary insights into the underlying solar phenomena responsible for SEP events. Rigorous evaluation metrics, including accuracy, F1‐score, and other established measures, are applied, along withK‐fold cross‐validation, to ensure the robustness and generalization of our models. Additionally, we explore the influence of observation window sizes on classification accuracy.

 
more » « less
Award ID(s):
2204363 2240022
PAR ID:
10517776
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Space Weather
Volume:
22
Issue:
6
ISSN:
1542-7390
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Solar energetic particles (SEPs) are associated with extreme solar events that can cause major damage to space- and ground-based life and infrastructure. High-intensity SEP events, particularly ∼100 MeV SEP events, can pose severe health risks for astronauts owing to radiation exposure and affect Earth’s orbiting satellites (e.g., Landsat and the International Space Station). A major challenge in the SEP event prediction task is the lack of adequate SEP data because of the rarity of these events. In this work, we aim to improve the prediction of ∼30, ∼60, and ∼100 MeV SEP events by synthetically increasing the number of SEP samples. We explore the use of a univariate and multivariate time series of proton flux data as input to machine-learning-based prediction methods, such as time series forest (TSF). Our study covers solar cycles 22, 23, and 24. Our findings show that using data augmentation methods, such as the synthetic minority oversampling technique, remarkably increases the accuracy and F1-score of the classifiers used in this research, especially for TSF, where the average accuracy increased by 20%, reaching around 90% accuracy in the ∼100 MeV SEP prediction task. We also achieved higher prediction accuracy when using the multivariate time series data of the proton flux. Finally, we build a pipeline framework for our best-performing model, TSF, and provide a comprehensive hierarchical classification of the ∼100, ∼60, and ∼30 MeV and non-SEP prediction scenarios.

     
    more » « less
  2. Abstract

    The high energy particles originating from the Sun, known as solar energetic particles (SEPs), contribute significantly to the space radiation environment, posing serious threats to astronauts and scientific instruments on board spacecraft. The mechanism that accelerates the SEPs to the observed energy ranges, their transport in the inner heliosphere, and the influence of suprathermal seed particle spectrum are open questions in heliophysics. Accurate predictions of the occurrences of SEP events well in advance are necessary to mitigate their adverse effects but prediction based on first principle models still remains a challenge. In this scenario, adopting a machine learning approach to SEP modeling and prediction is desirable. However, the lack of a balanced database of SEP events restrains this approach. We addressed this limitation by generating large data sets of synthetic SEP events sampled from the physics‐based model, Energetic Particle Radiation Environment Module (EPREM). Using this data, we developed neural networks‐based surrogate models to study the seed population parameter space. Our models, EPREM‐S, run thousands to millions of times faster (depending on computer hardware), making simulation‐based inference workflows practicable in SEP studies while providing predictive uncertainty estimates using a deep ensemble approach.

     
    more » « less
  3. Abstract

    The accurate prediction of solar flares is crucial due to their risks to astronauts, space equipment, and satellite communication systems. Our research enhances solar flare prediction by employing sophisticated data preprocessing and sampling techniques for the Space Weather Analytics for Solar Flares (SWAN-SF) data set, a rich source of multivariate time series data of solar active regions. Our study adopts a multifaceted approach encompassing four key methodologies. Initially, we address over 10 million missing values in the SWAN-SF data set through our innovative imputation technique called fast Pearson correlation-based k-nearest neighbors imputation. Subsequently, we propose a precise normalization technique, called LSBZM normalization, tailored for time series data, merging various strategies (log, square root, Box–Cox, Z-score, and min–max) to uniformly scale the data set's 24 attributes (photospheric magnetic field parameters), addressing issues such as skewness. We also explore the “near decision boundary sample removal” technique to enhance the classification performance of the data set by effectively resolving the challenge of class overlap. Finally, a pivotal aspect of our research is a thorough evaluation of diverse oversampling and undersampling methods, including SMOTE, ADASYN, Gaussian noise injection, TimeGAN, Tomek links, and random undersampling, to counter the severe imbalance in the SWAN-SF data set, notably a 60:1 ratio of major (X and M) to minor (C, B, and FQ) flaring events in binary classification. To demonstrate the effectiveness of our methods, we use eight classification algorithms, including advanced deep-learning-based architectures. Our analysis shows significant true skill statistic scores, underscoring the importance of data preprocessing and sampling in time-series-based solar flare prediction.

     
    more » « less
  4. Aims : This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods : We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results : The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models. 
    more » « less
  5. Lossio-Ventura J.A. ; Valverde-Rebaza J. ; Diaz E. ; Muñante D. ; Gavidia-Calderon C. ; Baria Valejo A.D. ; Alatrista-Salas H. (Ed.)
    The efforts in solar flare prediction have been engendered by the advancements in machine learning and deep learning methods. We present a new approach to flare prediction using full-disk compressed magnetogram images with Convolutional Neural Networks. We selected three prediction modes, among which two are binary for predicting the occurrence of ≥M1.0 and ≥C4.0 class flares and one is a multi-class mode for predicting the occurrence of more » « less