Abstract Synthetic biology has focused on engineering genetic modules that operate orthogonally from the host cells. A synthetic biological module, however, can be designed to reprogram the host proteome, which in turn enhances the function of the synthetic module. Here, we apply this holistic synthetic biology concept to the engineering of cell-free systems by exploiting the crosstalk between metabolic networks in cells, leading to a protein environment more favorable for protein synthesis. Specifically, we show that local modules expressing translation machinery can reprogram the bacterial proteome, changing the expression levels of more than 700 proteins. The resultant feedback generates a cell-free system that can synthesize fluorescent reporters, protein nanocages, and the gene-editing nuclease Cas9, with up to 5-fold higher expression level than classical cell-free systems. Our work demonstrates a holistic approach that integrates synthetic and systems biology concepts to achieve outcomes not possible by only local, orthogonal circuits.
more »
« less
Deconstructing synthetic biology across scales: a conceptual approach for training synthetic biologists
Abstract Synthetic biology allows us to reuse, repurpose, and reconfigure biological systems to address society’s most pressing challenges. Developing biotechnologies in this way requires integrating concepts across disciplines, posing challenges to educating students with diverse expertise. We created a framework for synthetic biology training that deconstructs biotechnologies across scales—molecular, circuit/network, cell/cell-free systems, biological communities, and societal—giving students a holistic toolkit to integrate cross-disciplinary concepts towards responsible innovation of successful biotechnologies. We present this framework, lessons learned, and inclusive teaching materials to allow its adaption to train the next generation of synthetic biologists.
more »
« less
- PAR ID:
- 10517816
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
BackgroundSelf‐sustained oscillations are a ubiquitous and vital phenomenon in living systems. From primitive single‐cellular bacteria to the most sophisticated organisms, periodicities have been observed in a broad spectrum of biological processes such as neuron firing, heart beats, cell cycles, circadian rhythms, etc. Defects in these oscillators can cause diseases from insomnia to cancer. Elucidating their fundamental mechanisms is of great significance to diseases, and yet challenging, due to the complexity and diversity of these oscillators. ResultsApproaches in quantitative systems biology and synthetic biology have been most effective by simplifying the systems to contain only the most essential regulators. Here, we will review major progress that has been made in understanding biological oscillators using these approaches. The quantitative systems biology approach allows for identification of the essential components of an oscillator in an endogenous system. The synthetic biology approach makes use of the knowledge to design the simplest,de novooscillators in both live cells and cell‐free systems. These synthetic oscillators are tractable to further detailed analysis and manipulations. ConclusionWith the recent development of biological and computational tools, both approaches have made significant achievements.more » « less
-
Byers, Karen B; Johnson, Barbara (Ed.)Introduction: Rapid advances in biotechnologies and transdisciplinary research are enhancing the ability to perform full-scale engineering of biology, contributing to worldwide efforts to create bioengineered plants, medicines, and commodities, which promise sustainability and innovative properties. Objective: This rapidly evolving biotechnology landscape is prompting focused scrutiny on biosecurity frameworks in place to mitigate harmful exploitation of biotechnology by state and non-state actors. Concerns about biosafety and biosecurity of engineering biology research have existed for decades as views about how advances in this and associated fields might provide new capabilities to malicious actors. This article considers biosecurity concerns using examples of research advances in engineering biology. Methods: The authors explore risk assessment and mitigation of transdisciplinary biotechnology research and development, using the framework developed in the National Academies' study on Biodefense in an Age of Synthetic Biology. Results: The Synthetic Biology Assessment Framework focuses on risks of using advanced approaches and technologies to enhance or create novel pathogens and toxins. The field of engineering biology continues to advance at a pace that challenges current risk assessment frameworks. Conclusions: This framework likely is sufficient to assess new science and technology advances affecting conventional biological agents. However, the risk assessment framework may have limited applicability for technologies that are not usable with conventional biological agents and result in economic or broader national security concerns. Finally, the vast majority of discourse has been focused primarily on risks rather than benefits, and analyzing both in future evaluations is critical to balancing scientific progress with risk reduction.more » « less
-
Abstract Routinizing the engineering of synthetic cells requires specifying beforehand how many of each molecule are needed. Physics-based tools for estimating desired molecular abundances in whole-cell synthetic biology are missing. Here, we use a colloidal dynamics simulator to make predictions for how tRNA abundances impact protein synthesis rates. We use rational design and direct RNA synthesis to make 21 synthetic tRNA surrogates from scratch. We use evolutionary algorithms within a computer aided design framework to engineer translation systems predicted to work faster or slower depending on tRNA abundance differences. We build and test the so-specified synthetic systems and find qualitative agreement between expected and observed systems. First principles modeling combined with bottom-up experiments can help molecular-to-cellular scale synthetic biology realize design-build-work frameworks that transcend tinker-and-test.more » « less
-
Abstract Synthetic biology conceptualises biological complexity as a network of biological parts, devices and systems with predetermined functionalities, and has had a revolutionary impact on fundamental and applied research. With the unprecedented ability to synthesise and transfer any DNA and RNA across organisms, the scope of synthetic biology is expanding and being recreated in previously unimaginable ways. The field has matured to a level where highly complex networks, such as artificial communities of synthetic organisms can be constructed. In parallel, computational biology became an integral part of biological studies, with computational models aiding the unravelling of the escalating complexity and emerging properties of biological phenomena. However, there is still a vast untapped potential for the complete integration of modelling into the synthetic design process, presenting exciting opportunities for scientific advancements. Here, we first highlight the most recent advances in computer-aided design of microbial communities. Next, we propose that such a design can benefit from an organism-free modular modelling approach that places its emphasis on modules of organismal function towards the design of multi-species communities. We argue for a shift in perspective from single organism-centred approaches to emphasising the functional contributions of organisms within the community. By assembling synthetic biological systems using modular computational models with mathematical descriptions of parts and circuits, we can tailor organisms to fulfil specific functional roles within the community. This approach aligns with synthetic biology strategies and presents exciting possibilities for the design of artificial communities.more » « less
An official website of the United States government
