skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Compliant Solid Polymer Electrolytes (SPEs) for Enhanced Anode-Electrolyte Interfacial Stability in All-Solid-State Lithium–Metal Batteries (LMBs)
Award ID(s):
2134715
PAR ID:
10517826
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Applied Polymer Materials
Volume:
6
Issue:
13
ISSN:
2637-6105
Format(s):
Medium: X Size: p. 7468-7477
Size(s):
p. 7468-7477
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract As solid‐state batteries (SSBs) with lithium (Li) metal anodes gain increasing traction as promising next‐generation energy storage systems, a fundamental understanding of coupled electro‐chemo‐mechanical interactions is essential to design stable solid‐solid interfaces. Notably, uneven electrodeposition at the Li metal/solid electrolyte (SE) interface arising from intrinsic electrochemical and mechanical heterogeneities remains a significant challenge. In this work, the thermodynamic origins of mechanics‐coupled reaction kinetics at the Li/SE interface are investigated and its implications on electrodeposition stability are unveiled. It is established that the mechanics‐driven energetic contribution to the free energy landscape of the Li deposition/dissolution redox reaction has a critical influence on the interface stability. The study presents the competing effects of mechanical and electrical overpotential on the reaction distribution, and demarcates the regimes under which stress interactions can be tailored to enable stable electrodeposition. It is revealed that different degrees of mechanics contribution to the forward (dissolution) and backward (deposition) reaction rates result in widely varying stability regimes, and the mechanics‐coupled kinetics scenario exhibited by the Li/SE interface is shown to depend strongly on the thermodynamic and mechanical properties of the SE. This work highlights the importance of discerning the underpinning nature of electro‐chemo‐mechanical coupling toward achieving stable solid/solid interfaces in SSBs. 
    more » « less
  2. Glassy solid-state electrolytes present several advantages over other classes of solid-state electrolytes, but some material and design challenges must be overcome prior to commercialization. 
    more » « less
  3. Abstract The solid–solid electrode–electrolyte interface represents an important component in solid‐state batteries (SSBs), as ionic diffusion, reaction, transformation, and restructuring could all take place. As these processes strongly influence the battery performance, studying the evolution of the solid–solid interfaces, particularly in situ during battery operation, can provide insights to establish the structure–property relationship for SSBs. Synchrotron X‐ray techniques, owing to their unique penetration power and diverse approaches, are suitable to investigate the buried interfaces and examine structural, compositional, and morphological changes. In this review, we will discuss various surface‐sensitive synchrotron‐based scattering, spectroscopy, and imaging methods for the in situ characterization of solid–solid interfaces and how this information can be correlated to the electrochemical properties of SSBs. The goal is to overview the advantages and disadvantages of each technique by highlighting representative examples, so that similar strategies can be applied by battery researchers and beyond to study similar solid‐solid interface systems. 
    more » « less
  4. null (Ed.)
  5. A spatially periodic structure of heterogeneous elastic rods that periodically oscillate along their axes is proposed as a time-modulated phononic crystal. Each rod is a bi-material cylinder, consisting of periodically distributed slices with significantly different elastic properties. The rods are imbedded in an elastic matrix. Using a plane wave expansion, it is shown that the dispersion equation for sound waves is obtained from the solutions of a quadratic eigenvalue problem over the eigenfrequency ω. The coefficients of the corresponding quadratic polynomial are represented by infinite matrices defined in the space spanned by the reciprocal lattice vectors, where elements depend on the velocity of translation motion of the rods and Bloch vector k. The calculated band structure exhibits both ω and k bandgaps. If a frequency gap overlaps with a momentum gap, a mixed gap is formed. Within a mixed gap, ω and k acquire imaginary parts. A method of analysis of the dispersion equation in complex ω−k space is proposed. As a result of the high elastic contrast between the materials in the bi-material rods, a substantial depth of modulation is achieved, leading to a large gap to midgap ratio for the frequency, momentum, and mixed bandgaps. 
    more » « less